
REPORT

Bug Bounties
and FOSS:
Opportunities, Risks,
and a Path Forward

Ryan Ellis
Associate Professor, Northeastern University

Jaikrishna Bollampalli
Candidate For Master Of Science In Software
Engineering Systems, Northeastern University

PUBLISHED BY

Bug Bounties and FOSS:
Opportunities, Risks, and
a Path Forward

Ryan Ellis
Associate Professor, Northeastern University

Jaikrishna Bollampalli
Candidate For Master Of Science In Software
Engineering Systems, Northeastern University

Introduction

	6	Log4j: Open-Source Security Under a Microscope
	9	����������Bounties and Open-Source Security: Charting a

Path Forward

	9	����������Structure of the Report

Section I

	11	Methods: Mapping Open‑Source Challenges,
Documenting Bounties

	11	����������GitHub Data: Surveying Maintenance and Security

	13	����������HackerOne Data: The Internet Bug Bounty Program

	14	���������� Interview Data: Understanding Open-Source Maintainers &
Bug Bounty Participants

Section II

	16	Open-Source Security: Structural Challenges
	17	����������Securing the Commons: Collaborative Debugging in

Open-Source Projects

	19	����������Maintaining Security: Time, Neglect, and the Problem
of Popularity

	20	����������������������� Life Gets in the Way: When Hobbies
Come Last

	21	����������������������� A Community of One: The Problem
of Neglect

	22	����������������������� Popularity and Its Discontents

	23	����������������������� A Well-Maintained Project Is a
Secure Project

	24	����������“It Sucks…”: The Unique Challenges of
Open-Source Security

Section III

	27	Bug Bounties and the Ongoing Remaking of
Security Work

	27	����������Bounty Everything: The Rise of Bug Bounty Programs

	27	����������������������� A Thriving Market for Flaws:
An Overview of the Bounty Ecosystem

	29	����������The Benefits of Bounties: Improved Security and
Flexible Work

	30	����������Precarious Work and Precarious Technology: Creating and
Propagating Risk

Section IV

	32	Open-Source Security Bounties: A Path Forward
	32	����������Shrinking the Window of Vulnerability: Improving Security

through Open-Source Bounties

	33	����������The Risks of Open-Source Bounty Programs: The Case
for Caution

	36	����������Best Practices and a Path Forward: A Future for Open-
Source Bounties

	36	�����������������������Recommendation #1: Invest in Holistic
Approaches to Maintenance

	37	�����������������������Recommendation #2: Bounty Last,
not First

	37	�����������������������Recommendation #3: Leverage Bounty
Programs to Improve Identification

	38	�����������������������Recommendation 4: Open-Source Bounty
Programs Should Adopt Ethical Practices

	39	����������������������� Recommendation #5: Bounty Funding
Should Be Community-Driven and Aid
Structural Support

Appendix A

	42	Measuring Open‑Source Maintenance
	42	����������Metrics

	42	����������Statistics Glossary

	43	����������Statistical Insights

Appendix B

	45	Testing Maintenance and Security
	45	����������Data Collection and Feature Selection

	45	����������Project Classification

	46	����������Modeling with Logistic Regression

	46	����������Feature Impact Analysis

	46	����������Key Insights

	47	����������Conclusion

 “When all the stars
align just right then,

I do what I can to help.”

6

Log4j: Open-Source
Security Under
a Microscope

Log4j had a “ticking bomb” sitting inside its code, and for
years, nobody seemed to notice.1 By the late-fall of 2021,
the popular open-source logging tool was widely used:
Apple, Google, Microsoft, Amazon, and countless others had
integrated it into their applications.2 Yet, unbeknownst to
the developers that had included the software into their
builds, or their billions of users that now used the resulting
applications that included Log4j, a serious flaw had been
introduced years earlier—in 2013—through an otherwise
unremarkable update.3 The vulnerability sat there for the
better part of eight years, without anyone uncovering it.4

On November 21, 2021, a researcher emailed
the small group of volunteers that maintain Log4j with the
bad news: there was a significant bug in their code.5 Like
many open- source projects, despite its importance and
ubiquity in commercial products, a fairly small collection of
volunteers developed and maintained Log4j.6 They offered it
up as-is for the rest of the world to use as they saw fit with
few restrictions.7 The newly identified flaw was serious: it
would allow a malicious attacker to take advantage of vulner-
able systems and launch arbitrary code.8 Gary Gregory, a
member of the team that worked for years to maintain Log4j
recalled his reaction to seeing the initial report: “[T]his one
was, ‘oh crap.’ In this case some of us were surprised, not
that there was a security issue, but just how bad it was.”9
Jen Easterly, head of the U.S. Cybersecurity and
Infrastructure Security Agency (CISA), described it as “one of
the most serious flaws” she had encountered.10

As the frantic work to fix the flaw kicked off,
more bad news followed: the vulnerability was being
exploited in the wild.11 The previously unknown bug was no
longer a secret: billions of machines were potentially at
risk.12 The Log4j team rushed to notify the public and release
an update that would fix the bug. The fallout was potentially
catastrophic. Joe Sullivan, chief security officer for
Cloudflare, observed that he would “be hard-pressed to think
of company that is not at risk.”13

Now came the hard part. Developing a patch
on a rushed timeline was indeed difficult, but deploying

1	 The description of the Log4j

vulnerability as a “ticking

bomb” is drawn from, Daniel

Stenberg, Qtd. in William

Turton, Jack Gillum, and Jordan

Roberston, “Inside the Race to Fix

a Potentially Disastrous Software

Flaw.,” Bloomberg. Dec. 13, 2021.

2	 Google estimated that

as of December 2021, tens of

thousands of software packages

and projects included Log4j. See

James Wetter and Nicky Ringland,

“Understanding the Impact of

the Apache Log4j Vulnerability,”

Google Security Blog. Dec.

17, 2021. Available online:

https://security.googleblog.

com/2021/12/understanding-

impact-of-apache-log4j.html. The

U.S. Cyber Safety Review Board,

observed that Log4j was integrated

into “millions of systems.”

U.S. Cyber Safety Review Board,

“Review of the December 2021 Log4J

Event.” July 11, 2022, pg. ii.

3	 A detailed timeline of the

genesis of the vulnerability,

eventual disclosure, and

response, is included in: Cyber

Safety Review Board, “Review

of the December 2021 Log4J

Event.” Christian Grobmeier, vice

president at Apache Software

Foundation, which oversaw the

development and maintenance

of Log4j, noted during the

ongoing crisis the ubiquity of

Log4j, remarking that “basically

half of the world, maybe even

more” uses it. Qtd in Turton,

Gillum, and Roberston, “Inside

the Race to Fix a Potentially

Disastrous Software Flaw.,”

4	 Cyber Safety Review

Board, “Review of the

December 2021 Log4J Event.”

5	 Ibid, 1-2.

6	 Log4j was maintained by a

group of volunteers working

under the Apache Software

Foundation. See Turton, Gillum,

and Roberston, “Inside the Race

to Fix a Potentially Disastrous

Software Flaw.”; and Patrick

Howell O’Neill, “The Internet

Runs on Free Open-Source

Software. Who Pays to Fix It?,” MIT

Technology Review, Dec. 17, 2021.

7	 Ibid.

8	 Later, the National Institute

of Standards and Technology

(NIST) would designate the flaw

as a “critical vulnerability”

and assign it the highest score

possible according to the

Common Vulnerability Scoring

System (CVSS). Ibid, 1-2.

9	 Qtd. in Turton, Gillum,

and Roberston, “Inside the

Race to Fix a Potentially

Disastrous Software Flaw.”

10	 Qtd. in O’Neill, “The
Internet Runs on Free

Open-Source Software.”

11	 Cyber Safety Review
Board, “Review of the December

2021 Log4J Event,” 2-4.

12	 Cyber Safety Review
Board, “Review of the December

2021 Log4J Event,” 2; O’Neill,

“The Internet Runs on Free

Open-Source Software.”

13	 Qtd. in Frank Bajakd, “’The
Internet’s on Fire’ as Tech

Races to Fix Software Flaw,”

Associated Press, Dec. 10, 2021.

https://security.googleblog.com/2021/12/-understanding-impact-of-apache-log4j.html
https://security.googleblog.com/2021/12/-understanding-impact-of-apache-log4j.html
https://security.googleblog.com/2021/12/-understanding-impact-of-apache-log4j.html

Introduction | Log4j: Open-Source Security Under a Microscope

7

Log4j had a “ticking bomb” sitting inside its code, and for
years, nobody seemed to notice.1 By the late-fall of 2021,
the popular open-source logging tool was widely used:
Apple, Google, Microsoft, Amazon, and countless others had
integrated it into their applications.2 Yet, unbeknownst to
the developers that had included the software into their
builds, or their billions of users that now used the resulting
applications that included Log4j, a serious flaw had been
introduced years earlier—in 2013—through an otherwise
unremarkable update.3 The vulnerability sat there for the
better part of eight years, without anyone uncovering it.4

On November 21, 2021, a researcher emailed
the small group of volunteers that maintain Log4j with the
bad news: there was a significant bug in their code.5 Like
many open- source projects, despite its importance and
ubiquity in commercial products, a fairly small collection of
volunteers developed and maintained Log4j.6 They offered it
up as-is for the rest of the world to use as they saw fit with
few restrictions.7 The newly identified flaw was serious: it
would allow a malicious attacker to take advantage of vulner-
able systems and launch arbitrary code.8 Gary Gregory, a
member of the team that worked for years to maintain Log4j
recalled his reaction to seeing the initial report: “[T]his one
was, ‘oh crap.’ In this case some of us were surprised, not
that there was a security issue, but just how bad it was.”9
Jen Easterly, head of the U.S. Cybersecurity and
Infrastructure Security Agency (CISA), described it as “one of
the most serious flaws” she had encountered.10

As the frantic work to fix the flaw kicked off,
more bad news followed: the vulnerability was being
exploited in the wild.11 The previously unknown bug was no
longer a secret: billions of machines were potentially at
risk.12 The Log4j team rushed to notify the public and release
an update that would fix the bug. The fallout was potentially
catastrophic. Joe Sullivan, chief security officer for
Cloudflare, observed that he would “be hard-pressed to think
of company that is not at risk.”13

Now came the hard part. Developing a patch
on a rushed timeline was indeed difficult, but deploying

1	 The description of the Log4j

vulnerability as a “ticking

bomb” is drawn from, Daniel

Stenberg, Qtd. in William

Turton, Jack Gillum, and Jordan

Roberston, “Inside the Race to Fix

a Potentially Disastrous Software

Flaw.,” Bloomberg. Dec. 13, 2021.

2	 Google estimated that

as of December 2021, tens of

thousands of software packages

and projects included Log4j. See

James Wetter and Nicky Ringland,

“Understanding the Impact of

the Apache Log4j Vulnerability,”

Google Security Blog. Dec.

17, 2021. Available online:

https://security.googleblog.

com/2021/12/understanding-

impact-of-apache-log4j.html. The

U.S. Cyber Safety Review Board,

observed that Log4j was integrated

into “millions of systems.”

U.S. Cyber Safety Review Board,

“Review of the December 2021 Log4J

Event.” July 11, 2022, pg. ii.

3	 A detailed timeline of the

genesis of the vulnerability,

eventual disclosure, and

response, is included in: Cyber

Safety Review Board, “Review

of the December 2021 Log4J

Event.” Christian Grobmeier, vice

president at Apache Software

Foundation, which oversaw the

development and maintenance

of Log4j, noted during the

ongoing crisis the ubiquity of

Log4j, remarking that “basically

half of the world, maybe even

more” uses it. Qtd in Turton,

Gillum, and Roberston, “Inside

the Race to Fix a Potentially

Disastrous Software Flaw.,”

4	 Cyber Safety Review

Board, “Review of the

December 2021 Log4J Event.”

5	 Ibid, 1-2.

6	 Log4j was maintained by a

group of volunteers working

under the Apache Software

Foundation. See Turton, Gillum,

and Roberston, “Inside the Race

to Fix a Potentially Disastrous

Software Flaw.”; and Patrick

Howell O’Neill, “The Internet

Runs on Free Open-Source

Software. Who Pays to Fix It?,” MIT

Technology Review, Dec. 17, 2021.

7	 Ibid.

8	 Later, the National Institute

of Standards and Technology

(NIST) would designate the flaw

as a “critical vulnerability”

and assign it the highest score

possible according to the

Common Vulnerability Scoring

System (CVSS). Ibid, 1-2.

9	 Qtd. in Turton, Gillum,

and Roberston, “Inside the

Race to Fix a Potentially

Disastrous Software Flaw.”

10	 Qtd. in O’Neill, “The
Internet Runs on Free

Open-Source Software.”

11	 Cyber Safety Review
Board, “Review of the December

2021 Log4J Event,” 2-4.

12	 Cyber Safety Review
Board, “Review of the December

2021 Log4J Event,” 2; O’Neill,

“The Internet Runs on Free

Open-Source Software.”

13	 Qtd. in Frank Bajakd, “’The
Internet’s on Fire’ as Tech

Races to Fix Software Flaw,”

Associated Press, Dec. 10, 2021.

the fix—getting the myriad applications that had been built on top of Log4j
to adopt it presented its own sharp challenges. There was no clear way to
identify which applications actually used Log4j, with no master list or easy
way to track them.14 Most users had no idea if it was used in their applica-
tions.15 A coordinated response was quickly spliced together: governments
and tech companies released a flurry of advisories and warnings, and thou-

sands of security professionals worked to mitigate the
potential fallout, sharing tips, workarounds, and information
through formal and informal channels.16 Exploits and
attacks followed the public release of the vulnerability, but
the diligent and coordinated action of volunteers, tech
companies, and governments appeared to mitigate worst
case scenarios.17

The story of Log4j is something of a parable
for open-source projects and open-source security. In
many ways, Log4j points out the promise that open-source
software provides: a small, volunteer-run project created a
useful tool that found its way into billions of devices, provid-
ing untold value with minimal development costs. In terms
of its reach, it is a stunning and unquestioned success.
But the events of 2021 recast this success in a harsh light.
Many commentators—in industry, government, the open-
source community, and elsewhere—seized on the bug as an
example of the shortcomings and failings of open-source
security: a critical flaw in one of the building blocks of our
shared digital infrastructure sat undetected for years and
created a systemic and potentially catastrophic risk. The
U.S. Cyber Safety Review Board’s detailed analysis of the
incident placed the blame, in part, in the incentive structure
and organization of open-source projects. As they observed:

[The Log4j] event also called attention
to security risks unique to the thinly
resourced, volunteer-based open source
community. This community is not
adequately resourced to ensure that
code is developed pursuant to industry-
recognized secure coding practices and
audited by experts.18

The board drew attention to the seeming mismatch between
the development of code on a voluntary basis and sound
security practices. Security work, they reasoned, can often
fall by the wayside without proper incentives and support.

14	 Joseph Marks, “One Month
In, There Aren’t Any Huge,

Known Log4j Hacks,” “The

Cybersecurity 202” [Newsletter],

Washington Post, Jan. 11, 2022.

15	 Ibid.

16	 Cyber Safety Review Board,
“Review of the December 2021

Log4J Event,” 3-9, 35-37.

17	 Cyber Safety Review Board,
“Review of the December 2021

Log4J Event,”; Marks, “One

Month In, There Aren’t Any

Huge, Known Log4j Hacks.”

18	 Cyber Safety Review
Board, “Review of the December

2021 Log4J Event,” v.

https://security.googleblog.com/2021/12/-understanding-impact-of-apache-log4j.html
https://security.googleblog.com/2021/12/-understanding-impact-of-apache-log4j.html
https://security.googleblog.com/2021/12/-understanding-impact-of-apache-log4j.html

Bug Bounties and FOSS: Opportunities, Risks, and a Path Forward

8

This analysis was echoed by others. The U.S. Federal Trade
Commission (FTC) argued that this vulnerability was a
structural issue endemic to the open-source ecosystem:

[Log4j] is one of thousands of
unheralded but critically important
open-source services that are used
across a near-innumerable variety of
internet companies. These projects are
often created and maintained by
volunteers, who don’t always have
adequate resources and personnel for
incident response and proactive
maintenance even as their projects are
critical to the internet economy.19

Patrick Howell O’Neill, writing in the MIT Technology Review,
summarized the mismatch in incentives tartly, noting that
while Log4j was founded as a volunteer project and run
essentially for free, “million- and billion-dollar companies
rely on it and profit on it every single day.”20 When things
went awry, it fell to a group of volunteers working in their
spare time to develop a workable patch. Chris Wysopal,
CTO at Veracode, was blunt: the lack of funding of open-
source projects was nothing short of “a systemic risk to the
United States, to critical infrastructure, to banking,
to finance.”21

The Log4j bug, for many, underlines the
fatal shortcoming at the center of open-source projects:
voluntary projects with a lack of supporting resources
fail to properly account for or prioritize security. One of
the key benefits of open-source technologies, easy reuse
packages, is undermined by potentially lax security. As
packages are repurposed, insecure code spreads far and
wide. Here, misaligned incentives allow for the propagation
of a shaky component to be picked up and adopted,
potentially causing catastrophic harm along the way.

In the months that followed, there were
renewed calls for investment and prioritizing open-source
security.22 These were, certainly, not new concerns but
they were crystalized and given a pointed edge.23 But, the
path forward is uncertain: how best to support open-
source security remains both a pressing concern and an
open question.

19	 U.S. Federal Trade
Commission (FTC), “FTC Warns

companied to Remediate Log4j

Security Vulnerability,” FTC

Technology Blog. Jan. 2, 2022.

20	 O’Neill, “The Internet Runs
on Free Open-Source Software.”

21	 Qtd. in O’Neill, “The Internet
Runs on Free Open-Source Software.”

22	 For example, see Executive

Office of the President, “Readout

of White House Meeting on

Software Security,” Jan. 13, 2022.

Available Online: https://www.

whitehouse.gov/briefing-room/

statements-releases/2022/01/13/

readout-of-white-house-meeting-

on-software-security; Responding

to and Learning from the Log4Shell

Vulnerability, U.S. Senate

Committee on Homeland Security

and Government Affairs [Hearing],

Feb. 8, 2022; Brian Behlendorf,

“Log4Shell Retrospective,” Open

Source Security Foundation (Blog).

Dec. 15, 2022. Available Online:

https://openssf.org/blog/2022/12/15/

avoiding-the-next-log4shell-

learning-from-the-log4j-event-

one-year-later; U.S. Office of the

National Cyber Director, “Fact

Sheet: Office of the National Cyber

Director Requests Public comment

on Open-Source Software Security

and Memory Safe Programming

Languages,” Aug. 10, 2023. Available

Online: https://www.whitehouse.

gov/oncd/briefing-room/2023/08/10/

fact-sheet-office-of-the-national-

cyber-director-requests-

public-comment-on-open-source-

software-security-and-memory-

safe-programming-languages.

23	 Corin Faife, “White House Hosts
Tech Summit to Discuss Open-Source

Security after Log4j,” Jan. 13.

2022. Available Online: https://www.

theverge.com/2022/1/13/22881813/

white-house-tech-summit-apple-

google-meta-amazon-open-source-

security. See also Trey Herr,

Prepared Remarks, United States

Senate Committee on Homeland

Security and Government Affairs.

Feb. 8, 2022. Available Online:

https://www.hsgac.senate.gov/

wp-content/uploads/imo/media/doc/

Testimony-Herr-2022-02-08.pdf.

https://www.whitehouse.gov/briefing-room/statements-releases/2022/01/13/readout-of-white-house-meeti
https://www.whitehouse.gov/briefing-room/statements-releases/2022/01/13/readout-of-white-house-meeti
https://www.whitehouse.gov/briefing-room/statements-releases/2022/01/13/readout-of-white-house-meeti
https://www.whitehouse.gov/briefing-room/statements-releases/2022/01/13/readout-of-white-house-meeti
https://www.whitehouse.gov/briefing-room/statements-releases/2022/01/13/readout-of-white-house-meeti
https://openssf.org/blog/2022/12/15/avoiding-the-next-log4shell--learning-from-the-log4j-event-one-y
https://openssf.org/blog/2022/12/15/avoiding-the-next-log4shell--learning-from-the-log4j-event-one-y
https://openssf.org/blog/2022/12/15/avoiding-the-next-log4shell--learning-from-the-log4j-event-one-y
https://openssf.org/blog/2022/12/15/avoiding-the-next-log4shell--learning-from-the-log4j-event-one-y
https://www.whitehouse.gov/oncd/briefing-room/2023/08/10/fact-sheet-office-of-the--national-cyber-di
https://www.whitehouse.gov/oncd/briefing-room/2023/08/10/fact-sheet-office-of-the--national-cyber-di
https://www.whitehouse.gov/oncd/briefing-room/2023/08/10/fact-sheet-office-of-the--national-cyber-di
https://www.whitehouse.gov/oncd/briefing-room/2023/08/10/fact-sheet-office-of-the--national-cyber-di
https://www.whitehouse.gov/oncd/briefing-room/2023/08/10/fact-sheet-office-of-the--national-cyber-di
https://www.whitehouse.gov/oncd/briefing-room/2023/08/10/fact-sheet-office-of-the--national-cyber-di
https://www.whitehouse.gov/oncd/briefing-room/2023/08/10/fact-sheet-office-of-the--national-cyber-di
https://www.theverge.com/2022/1/13/22881813/white-house-tech-summit-apple--google-meta-amazon-open-s
https://www.theverge.com/2022/1/13/22881813/white-house-tech-summit-apple--google-meta-amazon-open-s
https://www.theverge.com/2022/1/13/22881813/white-house-tech-summit-apple--google-meta-amazon-open-s
https://www.theverge.com/2022/1/13/22881813/white-house-tech-summit-apple--google-meta-amazon-open-s
https://www.theverge.com/2022/1/13/22881813/white-house-tech-summit-apple--google-meta-amazon-open-s
https://www.hsgac.senate.gov/wp-content/uploads/imo/media/doc/Testimony-Herr-2022-02-08.pdf
https://www.hsgac.senate.gov/wp-content/uploads/imo/media/doc/Testimony-Herr-2022-02-08.pdf
https://www.hsgac.senate.gov/wp-content/uploads/imo/media/doc/Testimony-Herr-2022-02-08.pdf

Introduction | Log4j: Open-Source Security Under a Microscope

9

Bounties and Open-Source Security: Charting a
Path Forward

The following pages consider the benefits and drawbacks of one possible
intervention: the adoption of bug bounties for open-source projects.24 While
bounties have been selectively deployed for certain open-source projects,
a comprehensive analysis of their suitability has not yet been undertaken.
This report seeks to fill that gap. It draws together research on bug bounty
programs, open-source communities, and open-source security, and it
considers how bounties might improve security while avoiding myriad poten-
tial risks for security researchers, open-source projects, and the public.

The report uncovers a number of important findings. It
indicates that bounties can usefully enhance the security of open-source
software in specific circumstances: for mature open-source projects boun-
ties can provide an extra layer of security. There are clear benefits: bounties
can improve the number and quality of bug reports, they can help attract
talented researchers, they can help projects retain expert talent and reduce
community churn, and they can provide accountability mechanisms and
tools that are otherwise lacking. These are potentially important and signif-
icant benefits. But, there are limitations and drawbacks as well. Bounty
programs can undermine security in several ways. Counterintuitively,
investing in them can undermine security by drawing unhelpful attention
to understaffed or undermaintained projects, undermining reciprocity, a
key value that animates open-source communities, creating new financial
burdens that are unsustainable, and by drawing effort and resources
away from the root causes of insecurity. These conclusions point toward
a path forward, a way of designing and implementing open-source bounty
programs that capture benefits for security researchers, open-source
projects, and the public. This path is knotted and full of pitfalls, but with
due caution there are opportunities for meaningful improvement.

Structure of the Report

The report is divided into four sections. The first, “Methods: Mapping
Open-Source Challenges, Documenting Bounties” (→ p. 11) provides an
overview of the report’s methodology. The report employs mixed methods
and draws on prior research to shed light on the challenges of open-source
projects, the outline of bounty programs, and the potential fruitful collision

between the two. This section provides an overview of how
complementary novel qualitative and quantitative data were
scoped, collected, and analyzed; it also notes how earlier
datasets were revisited and leveraged. Section two, Open-
Source Security: Structural Challenges (→ p. 16), moves to
consider the security challenges open-source projects face.
Here, the report notes that the ability to identify and quickly

24	 Key examples of attempts
to wed open-source projects

and bug bounties include, the

collaborative Internet Bug Bounty

Program, Google’s Open-Source

Vulnerability Reward Program,

and the Sovereign Tech Fund’s

Bug Resilience Project.

Bug Bounties and FOSS: Opportunities, Risks, and a Path Forward

10

remediate bugs within a project is closely tied to the more general capacity
to maintain the project. This section spotlights the diversity within the
open-source ecosystem—projects of different size, shape, and organization
dot the landscape. This section also pauses to underline the variability of
performance across projects—while much attention is rightly drawn to
security challenges, there are noteworthy successes worth highlighting.
The report’s third section, Bug Bounties and the Ongoing Remaking of
Security Work (→ p. 27), provides a primer on bounties, offering the unfa-
miliar with a capsule overview of where they came from and how they work.
Drawing heavily on an earlier report by Ryan Ellis and Yuan Stevens, Bounty
Everything: Hackers and the Making of a Global Bug Marketplace, this section
identifies the benefits and harms associated with the rise of bounty plat-
forms.25 Finally, Open-Source Security Bounties: A Path Forward (→ p. 32),

concludes with a detailed consideration of the risks and benefits associated
with deploying bounties for open-source projects. It charts a path forward,
identifying how and when bounties might be usefully
expanded for select open-source projects. The report
concludes with an overview of best practices and actiona-
ble recommendations. Two appendices (→ p. 42) provide a
more in-depth discussion of the quantitative data analysis
related to assessing project maintenance and the relation-
ship between maintenance and security.

25	 Ryan Ellis and Yuan Stevens,
Bounty Everything: Hackers and the

Making of a Global Bug Marketplace,

Data & Society Research Institute.

2022. Available Online: https://

datasociety.net/library/bounty-

everything-hackers-and-the-making-

of-the-global-bug-marketplace.

https://datasociety.net/library/bounty-everything-hackers-and-the-making-of-the-global-bug-marketpla
https://datasociety.net/library/bounty-everything-hackers-and-the-making-of-the-global-bug-marketpla
https://datasociety.net/library/bounty-everything-hackers-and-the-making-of-the-global-bug-marketpla
https://datasociety.net/library/bounty-everything-hackers-and-the-making-of-the-global-bug-marketpla

11

Methods: Mapping
Open‑Source Challenges,
Documenting Bounties

This report draws together data on the open-source ecosystem and bug
bounties. It links newly collected qualitative and quantitative data with
existing datasets in order to expand and build upon earlier analysis. The
research is primarily based on two datasets: quantitative open-source
project and bounty data; and qualitative interview data with key participants
in open-source projects and bounty programs. The joining of qualitative
and quantitative data provides a rich look that captures both the expansive
and diverse nature of the open-source ecosystem, with fine-grained,
personal observations. These datasets are complementary: they provide
both a degree breadth and high-resolution focus that can speak usefully
to the challenges of open-source security. Give the size of the open-source
ecosystem, various filters were used to produce a sample that was
representative and practical. A detailed discussion of the methodological
approach follows; for those interested in skipping ahead to the analysis and
results, see Section II: Open-Source Security: Structural Challenges, below.

GitHub Data: Surveying Maintenance and Security

Data on open-source projects was collected from GitHub through targeted
selection and subsequent rounds of filtering. This data was collected,
stored, and analyzed in order to provide a window into the dynamics of
open-source projects and allow for analysis across a number of domains
related to general maintenance and security (for example, examining and
interrogating the wide spread in performance related to the identification,
review, and closing of issues related to a project). Initial selection
sought to identify projects hosted on GitHub that were at least minimally
significant and active in order to assess the challenges of maintenance
and security (and the relationship, if any, between the two). Utilizing
the query stars ≥ 100 and forks ≥ 50, we identified 181,878 initial popular
repositories (see Figure 1). In order to narrow the dataset down to the most
relevant repositories, we applied additional filters to focus on those that
are currently active. The criteria included repositories with at least 10
open issues, a recent commit within the last year, and a status indicating
that the repository was not archived. This filtering process reduced
the dataset to approximately 61,000 popular and active repositories.

Given the large number of repositories identified, we
performed a random sampling to manage the dataset size while preserving
statistical significance. A 10% random sample of the filtered repositories

Bug Bounties and FOSS: Opportunities, Risks, and a Path Forward

12

generated a subset of 6,158 repositories. This approach
enabled a manageable yet representative sample, ensuring
that the conclusions drawn would be applicable.

Next, we collected detailed data on the identified reposi-
tories’ issues and commit histories. This phase of the analysis focused on
collecting data and developing metrics related to maintenance activities,
including issue resolution times, commit frequencies, and contributor
involvement. The rationale behind this step was to obtain a deeper
understanding of each repository’s development dynamics and to identify
patterns that might indicate either sustained maintenance or potential
decline. The comprehensive data collected during this phase provided the
foundation for subsequent analyses of maintenance history and trends.

In looking at trend data, we ensured that partial or
incomplete data (for example, projects with only one or two months of data)
would not skew the analysis. To this end, we applied additional criteria to
ensure that the selected repositories demonstrated development activity
over an extended period and had a history of issue and pull request
resolutions. First, we filtered for repositories with commit activity within
the last year and a commit history spanning at least two years. Next, we
filtered the dataset by focusing on repositories with a history of issue
resolution, specifically those with at least eight quarters of data. This
filtering step was crucial for analyzing long-term maintenance trends.
Finally, to refine the dataset further, we applied a filter for repositories with
a history of pull request resolution, also requiring at least eight quarters
of data. These steps reduced the dataset to 3,707 repositories, ensuring
that the ones selected were consistently active, well-maintained, and
exhibited a suitable record of development and resolution practices.

↑ Figure 1 Process of targeted
selection and subsequent rounds of

filtering of GitHub repositories

181,878
repositories

61,580

6,158 4,314

3,707

1,635
Initial dataset

QUERIES
stars ≥ 100

and
forks ≥ 50

Filtered
With at least
10 open issues,
recent activity,
and not archived

Random
sampling

Issue and
pr activity

data analysis
QUERIES

total_issue_quarters >= 8
and

total_pr_quarters >= 8

CVE issues

Commit and issue
data analysis
Based on

commit activity
QUERIES

has_commit_activity_last_year: true
and

has_two_years_commit_history: true

Section I | Methods: Mapping Open‑Source Challenges, Documenting Bounties

13

These 3,707 repositories were analyzed and ranked
across classification metrics in order to identify trends and distribu-
tions related to maintenance activity. Maintenance metrics included,
calculating median issue resolution time, median pull request
resolution time, and the relevant slopes associated with these metrics
(to indicate improvement or decay in performance over time).

To enhance our understanding of the security practices,
we conducted a focused analysis on vulnerabilities reported within sampled
repositories. After filtering the dataset to 4,314 repositories based on
recent commit activity, we shifted our attention to gathering detailed
issue data and extracting Common Vulnerabilities and Exposures (CVE)
information. This step involved processing JSON files that contained issue
and pull request data for each repository. We cross-referenced these with
CVE data downloaded from the official CVE GitHub repository to identify
vulnerabilities associated with the repositories in our dataset. The process
began by extracting CVE numbers from issue titles using a regular
expression, followed by constructing file paths to locate the corresponding
CVE JSON files. These files were then parsed to retrieve key information
such as publication and update dates. For each issue linked to a CVE, we
calculated various metrics, including the delay between the CVE publication
and issue creation, as well as the time taken to resolve the CVE from both
its publication and date of update. This detailed analysis allowed us to
quantify the responsiveness of the repositories to security vulnerabilities,
a useful proxy for the security posture of these open-source projects.

Following the extraction of CVE data, we identified
approximately 1,600 repositories with associated CVE information.
For these repositories, we conducted a secondary analysis to gather
specific metrics related to their handling of security vulnerabilities.
The secondary analysis involved calculating key statistics for each
repository, including the median, mean, maximum, and minimum CVE
resolution times from the date of publication, as well as the total count
of CVEs per repository. Repositories without CVEs were filtered out to
ensure the analysis focused on those actively dealing with vulnerabilities.

HackerOne Data: The Internet Bug Bounty Program

HackerOne, the bug bounty platform, hosts the Internet Bug Bounty (IBB),
a program designed for select open-source projects.26 Data related to the
Internet Bug Bounty program offered an opportunity to analyze, with some

limitations, how bounty programs have been adopted to
open-source projects. We gathered all the available public
reports from the HackerOne IBB. This dataset includes
detailed reports of vulnerabilities and security issues
submitted by researchers participating in the program.
The collection of these reports is useful for analyzing the

26	 Currently, 21 projects are
included in the IBB program’s

scope, including curl, Ruby,

Rust, libssh, Django and others.

See HackerOne, “Internet Bug

Bounty.” Available Online: https://

hackerone.com/ibb?type=team.

https://hackerone.com/ibb?type=team
https://hackerone.com/ibb?type=team

Bug Bounties and FOSS: Opportunities, Risks, and a Path Forward

14

impact and trends in security contributions across various open-source
projects within the scope of the IBB. This data, in particular, is useful in
illuminating how security researchers interact with different open-source
repositories included within the program’s purview.

Interview Data: Understanding Open-Source
Maintainers & Bug Bounty Participants

Quantitative data was blended with 62 interviews conducted with key
participants in open-source projects and bug bounties. The sample
included 22 interviews conducted specifically for this project that focused
on open-source projects and open-source security, and 42 previously
conducted interviews focusing on bug bounties. Interview data was
critical: it illuminated and, in some cases, complicated the trends
observed within the quantitative data. Semi-structured conversations
with key figures in both open-source projects and bounty programs
offered useful insights that would have not otherwise been visible.

In the summer of 2024, the project team conducted
interviews with 22 maintainers and key participants in open-source projects
and open-source security. The interviewees were identified in three ways.
First, open-source projects included in the GitHub dataset, described above,
were analyzed in order to identify the top five percent and bottom five
percent of all projects according to median issue resolution time (that is,
how long it took a project to resolve a submitted issue). This measure was
selected as a rough but useful proxy for maintenance capacity or ability.
Drawing interviewees from both ends of the spectrum sought to ensure
that a range of perspectives, both in terms of success and frustrations or
difficulties, would be captured in the interview data. Contact information
for key participants and maintainers was extracted from the GitHub data
sample and interview requests were sent to identified potential subjects.

Additionally, a more targeted outreach effort centering
on individuals directly working on open-source security was undertaken.
Here, personnel associated with the repositories included in the current
Internet Bug Bounty program were identified through the HackerOne
dataset. Manual identification of additional possible interviewees was
undertaken by reviewing GitHub data, including contacts and personnel
indicated in associated security policies and security teams. Snowball
sampling led to the identification of additional potential subjects.

Interviews were open-ended and conducted via videoconfer-
encing software.27 Professional transcripts were prepared
and shared with all interviewees. All participants were allowed
to review and edit their transcript as they saw fit; they also
were given the option to use their real name or a pseudonym
for the purposes of this project. Interview memos were
produced for each interview; and transcripts were analyzed.

27	 Two interviews were conducted
according to a different

protocol at the request of the

interviewees. These interviews

were conducted via email

and were, as a result, somewhat

more formal and structured.

Section I | Methods: Mapping Open‑Source Challenges, Documenting Bounties

15

This open-source security interview data was supplemented
by earlier rounds of interviews conducted by Ryan Ellis and Yuan Stevens
in preparation for their earlier report, Bounty Everything. This included
42 interviews with key participants in bounty programs conducted
between 2019 and 2021. These interview transcripts were reviewed and
reconsidered in light of the particular questions raised in this report. These
interviews offered useful information concerning the mechanics, benefits,
and risks of bounty programs in general. The bounty interviews were
conducted in the same manner as the open-source ones: all interviews
were transcribed, reviewed by participants, and then analyzed. Two
interviewees, Katie Moussouris (Luta Security CEO) and Jack Cable (CISA),
experts in cybersecurity with significant experience in both bug bounty
programs and open-source security, were included in both rounds.

16

Open-Source Security:
Structural Challenges

It is hard to overstate the importance of open-source
technology. Nearly every application, mobile device, and
digital network that we use relies on open-source compo-
nents.28 Open-source technologies are foundational: they
are the building blocks for much of the technology and
services—commercial, non-profit, and government—that we
encounter in our daily lives.

Open-source software stands in opposition
to closed or proprietary software.29 It is defined by a
commitment to make source code available for review,
modification, and sharing. Critically, a typical open-source
license requires that all subsequent modifications be made
available under the same terms. In other words, additional
iterations must likewise be made available for review, modi-
fication, and sharing. Open source, as an innovation, is a
clever inversion of typical property regimes and imaginings.
While intellectual property is usually structured around
exclusivity and control, open source is defined by an imper-
ative to share—to distribute and make available work for
others to make use of and build as they see fit.30

Voluntary work sits at the center of the
open-source ecosystem. While some open-source partici-
pants are funded through their employer, grants, or other
means, volunteering is the norm. As such, participants elect
to work on projects and tasks that interest them.31
Volunteers are drawn to open-source projects for a host of
reasons: curiosity, an opportunity to work with a likeminded
community, a drive to learn new skills, a desire to empower
others, and, perhaps most of all, a do-it-yourself sprit that
inspires them to create something new in the world. Chris, a
long-time contributor to MDN Web Docs (formerly, Mozilla
Developer Network), recalled with still-evident wonder the
moment when he realized that “all these little bits of soft-
ware that we use…are made by a whole bunch of
volunteers.”32 The work of many, as he put it, has “advan-
taged us more than we could know.”33

Reciprocity is key value. While projects
are free to be reused and much—though not all—development
is undertaken on a voluntary basis, reciprocal contributions
are prized and sought after. Sarah, a member of Django’s
security team, recalled that she was initially drawn to

28	 The importance and ubiquity
of open-source technology

is broadly recognized, see

Executive Office of the President,

“Securing the Open-Source

Software Ecosystem.” Jan. 2024,

4. A recent study concluded

that open-source components are

found in 96% of codebases. Manuel

Hoffman, Frank Nagle, and Yanuo

Zhou, “The Value of Open Source

Software,” Harvard Business School

Working Paper Series, 2024.

29	 No single definition of
“open source” is available but,

generally, the GNU General Public

License and its requirements are

a useful bedrock. Thomas Haigh

and Paul E. Ceruzzi, A New History

of Modern Computing (Cambridge,

MA: MIT Press, 2021). Important

debates between free software,

open source, and other competing

histories, visions, and projects

exist but are beyond the scope

of this report. For in-depth and

useful discussions of the history,

organization, and importance of

free and open source software,

see Steven Weber, The Success of

Open Source Cambridge, MA: Harvard

UP, 2004); Christopher M. Kelty,

Two Bits: The Cultural Significance

of Free Software (Durham, NC:

Duke UP, 2008); E. Gabriella

Coleman, Coding Freedom: The

Ethics and Aesthetics of Hacking

(Princeton, NJ: Princeton UP,

2013); and Christopher Tozzi, For

Fun and Profit: A history of the

Free and Open Source Revolution

(Cambridge, MA: MIT Press, 2017).

30	 See Coleman, Coding Freedom.

31	 Weber describes this as
an ideal type, true often

enough and strived for but

with notable exceptions (as

discussed below). Weber, The

Success of Open Source, 62.

32	 Chris M., Interview, 2024.

33	 Ibid.

Section II | Open-Source Security: Structural Challenges

17

participate in open source projects in part as a way to “give back a little to
some of the packages that I really admire and rely on.”34 In conversations
with participants and maintainers, they spoke plainly about their desire and
hope that users would turn and contribute back to the projects that they use.

In practice, the open-source ecosystem is defined by a
broad expanse of projects with wide variation in purpose, size, and organi-
zation. It includes large, complicated projects that span decades of work
with established codes of conduct and contributor guidelines, a defined
group of core maintainers, specialized security teams, thousands of contrib-
utors, and millions of users; and it includes small projects that are created
and run by a handful of individuals with few (if any) meaningful contributors
from others. Nadia Eghbal’s survey of the challenges of creating sustainable
open source projects, The Making and Maintenance of Open Source Software,
provides a rough typology of different open source projects. It identifies
federations, defined by a high number of contributors (usually organized into
subgroups) and a large pool of users; clubs, with a roughly equal match of
contributors and users; toys, small projects with one maintainer and few
users; and, finally, stadiums, defined by a small number of contributors and
many passive users.35 Dennis, a core contributor to Managram, an open-
source microkernel-based operating system, summarized the breadth of the
ecosystem well, reflecting on how large and popular projects, such as
Debian, develop into effectively a “mini-government” with a dedicated
administrative staff, steering committees, and all the rules and process that
follows, while other projects hinge almost entirely on the work of two or

three maintainers.36 These different sorts of projects all
have a role to play in the open-source ecosystem, though
Dennise had to note that “[n]o want starts wanting to be
involved in a mini-government.” If you want to be involved in
a government…go into politics.”37

Securing the Commons: Collaborative
Debugging in Open-Source Projects

For both open source and proprietary projects, finding and
fixing bugs is a constant challenge. Unpatched bugs can
create novel pathways for attackers and undermine secu-
rity.38 Decades ago, Fred Brooks, in his classic reflection on
software design and management, The Mythical Man-Month,
estimated that roughly 50% of the time devoted to develop-
ing a commercial software program is occupied with finding
and fixing bugs.39 Yet, despite best efforts, they do, of
course, slip through the cracks and find their way into
software applications that have escaped the backroom of
product testing and made it to market. As Brooks ruefully
noted, “[i]n the merciless light of real use, every flaw will

34	 Sarah B., Interview, 2024.

35	 Nadia Eghbal, The Making
of Maintenance of Open Source

Software (San Francisco;

Stripe, 2020), 56-64.

36	 Dennis B., Interview, 2024.

37	 Ibid.

38	 Bugs, of course, are not only
or simply a security problem.

Many flaws create annoying

difficulties for users without

undermining security. For the

purposes of this report, the more

general label, “bug,” will be used

interchangeably with the more

specific and narrower category

or subset of bugs that are

security flaws or vulnerability.

39	 Frederick P. Brooks, Jr.,
The Mythical Man-Month: Essays

on Software Engineering,

Anniversary Edition (Reading,

MA: Addison-Wesley, 1995), 20.

Bug Bounties and FOSS: Opportunities, Risks, and a Path Forward

18

show.”40 Users have a way of spotting all the flaws that the
developers somehow missed.

Years later, Eric Raymond recast Brooks’
observation in the context of open-source software, and the
lament became a celebration.41 For Raymond and others,
open source collapses the distance between user and devel-
oper. By exposing projects to varied users, new flaws can be
found and fixed by relying on the effort, experience, and
wisdom of the crowd. As Raymond famously put it, “[g]iven
enough eyeballs, all bugs are shallow.”42 The embrace of a
wide-pool of users and developers, for Raymond, can lead to
the more efficient spotting and fixing of flaws.43 For Brooks,
users finding and reporting flaws, was a testament to the
inevitable incompleteness and imperfection that clung to
software development; for Raymond, collaborative debug-
ging was one of the strengths of open source development.

In practice, however, finding and fixing bugs
in open-source projects remains a spot of stubborn friction.
Bugs have a long shelf life, often remaining unidentified or
unfixed for months or years after first being disclosed and
published. A review of issue resolution time and CVE data
for our GitHub sample is revealing. The majority of issues
(51.1%) with an associated CVE number took more than three
months to fix, with more than a third (34.2%) taking longer
than six months to resolve (see Figure 2). A fairly narrow set
of issues, 28.5%, were fixed within the first month after
initial publication of the CVE. Clearly, as with general issues,
most security issues linger and are slow to be resolved.

40	 Brooks, The Mythical
Man-Month, 69.

41	 Eric S. Raymond, The Cathedral
and the Bazaar (2000). Available

Online: http://www.catb.org/~esr/

writings/cathedral-bazaar/

cathedral-bazaar/index.html.

42	 Raymond famously dubbed
these observations as

“Linus’s Law” in reference to

Linux development. Raymond,

The Cathedral and the Bazaar.

43	 Ibid.

↑ Figure 2 Resolution Time for
Issues with Associated CVE

Interval runs from initial CVE

publication date to the date when

associated issue is resolved

by a project. Data drawn from

1,824 unique repositories and

includes 34,385 resolved issues

and 3,446 open issues. See Section

I: Methods: Mapping Open-Source

Challenges, Documenting Bounties

for a detailed discussion of

data collection and sampling.

25%

50%

75%

100%

<1 1–3

28.5%
9,783

issues

3–6 6–9 9–12 >12

Percentage

Interval
in months

20.5%
7,032

16.9%
5,808

9.5%
3,249 5.7%

1,970 19%
6,543

51.1% took more
than three months

34.2% took more
than six months

http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/index.html
http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/index.html
http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/index.html

Section II | Open-Source Security: Structural Challenges

19

Maintaining Security: Time, Neglect, and the Problem
of Popularity

Open-source security challenges largely track the general challenges of
maintaining open-source projects (as discussed in detail below). The same
difficulties that make it hard to keep up with the day-to-day maintenance of
an open-source project also spill over and undermine security. A close look
at a cross-section of projects is clear: a well-maintained project is often a
secure project. Likewise, projects that struggle with everyday maintenance
typically have trouble identifying and fixing bugs in a timely fashion.

Maintaining open-source projects is a clear and ongoing
challenge. A review of the assembled GitHub data underlines the
significant variation that exists within open-source projects—some are
well-maintained, while others are in a state of comparative disrepair
(for a detailed analysis of the data, see Appendix A: “Measuring
Open-Source Maintenance” → p. 42). While the median time to resolve
issues for projects across the sampled data was a little over 20 days,
some projects can take several years to resolve issues. Similarly,
data regarding pull request resolution times follows a similar pattern:
significant variation with wide extremes across projects. An analysis
of a broad set of metrics related to maintenance, including the rate
of commit activity, issue resolution time, pull request resolution
time, and others show significant variance across projects.

The majority of open-source projects are in a state of
decline, following a similar trajectory: a decline in maintenance and
activity over time. A review of the collected project data reveals a
consistent picture (see Figure 3). As they progress, most open-source
projects begin to take longer and longer to respond to submitted issues.

Likewise, over time, most of them start to show longer
gaps between when a pull request is submitted and when
it is resolved. As for activity, most projects see a decline
in the number of active contributors as the project ages:
fewer and fewer new people enroll to contribute. And,
unsurprisingly, the number of commits also dwindles.

↘ Figure 3 Analysis of Open-Source
Project Performance Over Time

Data collected from 3,707 open-

source repositories. Improving and

declining projects are identified

through analysis of the slopes

associated with various metrics.

Percentage of projects 25 50 75 100

Metrics

Number of contributors
(per quarter)

Number of commits

Pull request
resolution time

Issue resolution time 80.4% of projects declining

78.1%

77.7%

54.2%45.8% improving

19.6%

21.9%

22.3%

Bug Bounties and FOSS: Opportunities, Risks, and a Path Forward

20

The difficulties associated with maintaining open-
source projects are no mystery, with maintainers and core contributors
repeatedly pointing to the same family of issues that bedevil effective
stewardship: a lack of time and resources, too few participants and
worthwhile contributions, and an overwhelming flood of contributions
and attention—that bedevil effective stewardship. These issues eat
away at the ability of maintainers to keep their projects updated and
responsive to their users; they also, unsurprisingly, undermine security.

Life Gets in the Way: When Hobbies Come Last

In conversations with open-source maintainers, complaints regarding the
lack of time available to devote to their projects is a near-constant refrain.
For many, maintaining an open-source repository is—or at least started out
as—a labor of love. But the pressures of life often do not leave enough space
for this voluntary work. For many, the commitments of a full-time job, family,
or other interests squeeze the project. Johann, a research scientist at the
Pasteur Institute, ran through all the ways that life had started to crowd out
participating in voluntary projects. Work and family were his priority: he had
left little time for his hobby, and this impacted his ability to maintain voluntary
projects. As he recounted with a certain amount of self-deprecation:

[S]ometimes I miss messages. I forget to answer or I tag
them somewhere and I forget to add them to my to-do
list. So I just forget about them. And there’s messages
without answers for a month. Or I don’t integrate
patches…I don’t follow up with contributions because
I [have]very [little] time.44

He spoke for many harried open-source participants when he noted that
“very often this hobby, open-source projects, are the first thing to [go].”45
Mark, the creator and maintainer of a popular gaming add-on, echoed
Johann’s point, noting that as a hobby, the project almost always, “gets put
down at the end” of his list of responsibilities.46 Dennis, the Managram main-
tainer introduced above, was succinct: “Unfortunately, real life is busy.”47

Some, like Uday, the creator and maintainer
of the package RNSwipeButton, find themselves in a bind.48
Four years ago, he started this project because it was
something that he wanted—rather than waiting for someone
else to write the code he needed, he did it himself. Over
time, it became useful and widely used, adopted and repur-
posed by others. But now his interest is starting to flag.
Uday wants to move onto something new, something

44	 Johann, Interview, 2024.

45	 Johann, Interview, 2024.

46	 Mark W., Interview, 2024.

47	 Dennis B., Interview, 2024.

48	 Uday K., Interview, 2024.

Section II | Open-Source Security: Structural Challenges

21

different. But he feels a responsibility to those that use and have built on
his work. They are counting on him to continue to maintain and keep the
project updated; if he doesn’t, he feels that he will jeopardize their work.
Dennis, introduced above, summarized this common trajectory: “[it] always
starts out as either I need something, it isn’t available, so I’ll write it myself;
or, ‘hey, this looks fun and I want to help the project out because I use it.’”49
But, over time, he reflected, this somewhat spur of the moment lurch into
open-source morphs into a sense of responsibility. It is a sticky problem:
maintainers like Uday are torn between keeping up support for the project
and community that they helped foster and a desire to move on.

 The cross-pressures of life, the lack of time to get
back to that nagging hobby that needs tending, creates difficulties
for open-source projects. When maintenance understandably comes
last, projects become slow to respond to pull requests and the pile of
issues waiting for attention. With respect to security, the costs are
easy to spot: new bugs are slow to be identified and slow to be fixed.

A Community of One: The Problem of Neglect

For many projects, these challenges are compounded by neglect. In these
instances, the hoped-for flowering of a community of contributors has not
come to pass. Rather, within what Eghbal describes as Toy and Stadium
projects, a single maintainer or small group of maintainers shoulder the full
burden of running the project with little productive support from a larger
community of users.50 Even for projects that have caught on and developed
a large user base, there often is still a lack of useful contributions. Dennis,
the Managram maintainer, was quick to note that many important and
popular projects are actually contingent on the work of one or two maintain-
ers: “It is almost scary that we as a community…are relying on a few people
to maintain such core pieces of infrastructure.”51 Users may well like and
use the project, but, in the eyes of the maintainers, they are not always
investing their time and effort into growing or supporting the project.

Maintainers commented on what they took to
be a lack of reciprocity. Users often are eager to make use of an
open-source project, perhaps even flag an issue or two, but they are
reluctant or unwilling to step in and make ongoing durable contribu-
tions. Jan, a contributor to BigBlueButton, an open-source virtual
classroom software program, remarked with some exasperation that:

one thing I really don’t like that I have
experienced in several [open source]
projects is people creating feature
requests with a kind of tone, like
demanding stuff to be developed, but

49	 Dennis B., Interview, 2024.

50	 Eghbal, The Making
and Maintenance of Open

Source Software.

51	 Dennis B., Interview, 2024.

Bug Bounties and FOSS: Opportunities, Risks, and a Path Forward

22

[they] refuse to work on it by themselves…And I don’t
know how, where they get it from, but they think they
have the right to ask for features and they have to be
done just because they’re asking for it.52

For Jan and others, it seems that it is always easier for users to write in with
a request for some new added feature or point out a possible problem, than
it is for them to roll up their sleeves and try to develop a feature or fix. Chris,
the MDN maintainer, is always trying to spot potentially useful contributors
and grow the larger community, looking to see who might be invested in the
project as opposed to others that are just passing through and “submitting
a single fire-and-forget PR.”53

The problem of neglect is a burden for open-source
projects. A lack of active contributing users and a lack of reciprocity
among users leaves projects in a difficult state: contributions are
concentrated on a single or small circle of overburdened maintainers.

Popularity and Its Discontents

Ironically, in some instances the only thing worse than too few contributors
is too many.54 Not all contributions are useful or welcome: sometimes they
are more hassle than help. Poorly drawn pull requests, meandering
or unclear issues, harassing comments, and outright spam pull maintainer
attention, already a scarce resource, away from core project work with
little added benefit.

Mark, the core maintainer of a small project that provided an
add-on for role playing games, spoke for many when he noted that the poor
quality of some issues and pull requests created a drag for
the project.55 These requests are time-consuming and
sometimes tangential to the project. Uday underlined this
point, complaining that often people submit what are effec-
tively a feature request as an issue, an annoyance that
draws him away from actual issues that need his attention.56

For Alex, a long-time contributor to Rust,
the accessibility of open-source projects is at once a bless-
ing and a curse. For a popular project like Rust, he noted, the
stream of issues and pull requests can be a real “firehouse,”
an endless thread of things that need attending to.57
Alex reflected on working on a popular project, noting that
users are constantly interjecting:

[they will] be like, ‘it’s broken. Please fix
this. I need this bug, I need this feature,

52	 Jan K., Interview, 2024.

53	 Chris M., Interview, 2024.

54	 Eghbal discusses at length
the challenge of extractive

contributions and the problem

of attention. There reframing

of the problem of open-source

maintenance as one of too

much community involvement,

rather than too little,

is invaluable. See Eghbal,

the Making and Maintenance

of Open Source Software.

55	 Mark W., Interview, 2024.

56	 Uday K., Interview, 20024.

57	 Alex C., Interview, 2024.

Section II | Open-Source Security: Structural Challenges

23

blah, blah, blah, blah, blah.’ And so dealing with the
constant weight of that can become very burdensome,
especially as it streams in over the span of a decade…
Some folks are super rude. They’re like, ‘why have you
not done this? This is ridiculous. How can anyone not do
this?’ So seeing that over time can be very crushing…58

To Alex, these sort of demanding and rude comments are “one of the major
downsides of open source.”59 In an open community, where all contributions
are welcome, some contributions are, at best, counterproductive, and at
worst, entitled and abusive. He was clear: these sorts of interactions are
the one of the primary reasons he “eventually burned out on Rust.”60

Chris, the maintainer introduced above that works on MDN
Web Docs agreed with many others in noting that the high-volume of incom-
ing submissions was time consuming and draining. Remarking with sympathy
that, “[t]hen there’s loads of people that turn up…that are interested in
helping but they haven’t got a clue how to help.”61 But, he is reluctant to
foreclose avenues for broad participation or contributions. He wants the
project to remain open and accessible: as he notes, you never know, when a
new first-time contributor might actually grow into a productive and long-
term member of the project. Alex, despite his misgivings, agrees on this
point: keeping open source open, having a low bar for entry, despite the
drawbacks, is important; it is how new, fresh, blood joins the project. This
churn of new entrants finding their way to contribute, is important and
matches what many participants see as a key benefit of open-source
projects: an ecosystem that is open to all and that can empower anyone.

Finding ways to manage attention—to limit those tasks that
sap energy and pull maintainers away from positive contributions—is critical.
Many projects have taken steps to try to improve the quality, and not
just the quantity, of contributions. Guidelines, some degree of formal or
informal vetting, and other practices can all help, but these steps always
involve some degree of trade-off: barriers are, in the end, risk alienating
new or returning contributors. Yet, for many projects it is worth the risk.

A Well-Maintained Project Is a Secure Project

Maintenance challenges spillover and undermine security. Quantitative
analysis of the GitHub data is instructive: projects that are adept at essen-

tial maintenance activities, including most notably efficient
management of pull requests and a high degree of ongoing
commit activity (engagement with the project) are also
adept at identifying and fixing security issues in the reposi-
tory (for a detailed overview of the quantitative analysis, see
Appendix A: “Testing Maintenance and Security” → p. 45).

58	 Alex C., Interview, 2024.

59	 Alex C., Interview, 2024.

60	 Alex C., Interview, 2024.

61	 Chris M., Interview, 2024.

Bug Bounties and FOSS: Opportunities, Risks, and a Path Forward

24

These practices are firmly knotted: maintenance and security walk hand-
in-hand. The work of maintaining a project—responding to issues, approving
pull requests in a timely manner, seeking out and cultivating active and
productive contributions—is also the work of creating a secure project.
Without proper maintenance, security inevitably suffers. Indeed, without
adequate time to work on a project, neglect from users, or an abundance
of counterproductive attention, reported issues and pull requests languish
while waiting for a response. The project becomes undermaintained,
still alive but limping. Here, too, bugs go unidentified or unaddressed.

“It Sucks…”: The Unique Challenges of
Open-Source Security

The general challenges of maintaining an open-source project are
compounded by the additional unique challenges associated with security
work. Voluntary labor allows interested individuals to pick and choose—
self-select—the aspects of a project that they want to focus on. For many,
security is simply not attractive. Aaron, a core contributor that does security
work for both Rack and Ruby on Rails, bluntly explained why contributors
avoided security work: “Because it sucks! It’s not fun.”62 He recounted how,
he had reluctantly stumbled into security work:

I didn’t really like [security work]. I wasn’t particularly
interested or wanted to do it. But I don’t know…I was like,
‘Well, somebody’s got to do it and I can do it.’ So I did. And
that’s basically how I’ve been involved in any security team.

Volunteers are driven by what they find interesting and fulfilling. Security,
often, does not fit the bill. Working on security issues often cuts out some of
the core individual benefits that participants derive from working on open-
source projects: collaboration and feedback. Aaron expanded on the challenge:

[Security is] not a particularly fun task to have. So you
have like I’ll try to describe the different aspects that
make it unfun. First, you have to take every security
report that comes to you, you need to take it seriously and
investigate it thoroughly. And unfortunately, you have to
do that basically in secret, because if it’s a real security
vulnerability, you want to make sure that you get it fixed or
have a fix for it before it’s more widely more widely known.
And this is not fun because it means like you can’t get

62	 Aaron P., Interview, 2024.

Section II | Open-Source Security: Structural Challenges

25

you can’t really get feedback from the community or
other folks. So you’re fairly isolated working on it.

The nature of security issues, requires a degree of isolation—these problems
cannot always be fixed in the open. In some cases, projects silo these
issues into a different triage and tracking system, and only particular
authorized contributors are able to work on security issues. In this way,
collaboration is made more difficult or significantly circumscribed.

Additionally, security work is both high-pressure and
filled with potential time-wasting detours. As Aaron continued:

Second… so you do have to take these [issues] seriously,
but you also get a lot of junk reports at the same time.
So you’re trying to filter the wheat from the chaff. And a
lot of times you just get these crap reports, it just sucks.

Volunteers are driven by what they find interesting and fulfilling. Given
this description, it is easy to see why many avoid security work.

Some projects are able to solve these problems by
supporting paid staff to take on the important but unloved job of managing
security and by developing security teams to enable collaboration. Django
stands out as a useful example. While the bulk of their security team are
volunteers, a small number of contractors help manage incoming security
issues and develop fixes. This ensures that security remains an active
priority, while allowing the volunteers to focus on issues that they find
engaging and interesting (and sloughing off the bits they would rather not
deal with). Shai, a member of the security team at Django, described his role:

I try to help resolve whatever issues that I can,
when I have time for it and when usually also when
I have interest, some of the issues that come up,
I have nothing to contribute to… When all the stars
align just right then, I do what I can to help.

Shai noted that many security issues that are reported to the project are, in
fact, not really security issues at all: they are misunderstandings or non-is-
sues. Wading through the pile of incoming reports is time consuming and
tedious. For Shai, the work of contractors is absolutely essential: they have
the time and the incentive to work through these reports and sort the
serious from the trivial. Shai is clear about the importance of the

Bug Bounties and FOSS: Opportunities, Risks, and a Path Forward

26

contractors: “These days, when I know that there are some people paid to
do it, I trust them to be more patient than I am.”63

The structure of Django’s security team ensures that, for
volunteers like Shai, this often unloved corner of open-source work remains
interesting and engaging. Working with the security team—a group of about
10—enables collaboration. Security reports are isolated from the regular
issues tracking system and delivered to this small working group, who are
able to discuss and review the submissions in private. Even better, with the
help of the invaluable paid contractors, volunteers can peel off the aspect of
the work they do not enjoy and focus on what they find engaging. The work is
not isolating for Shai; it remains fulfilling.64

But for thinly resourced projects, developing a security
team with paid support may not be possible. In a purely
voluntary model, self-selection leads some participants
to avoid taking on the burden of security work.

63	 Shai B., Interview, 2024.

64	 Shai B., Interview, 2024.

27

Bug Bounties and the Ongoing
Remaking of Security Work

In some ways, little has changed since Fred Brooks’ insight, noted
above, decades ago: software testing is expensive, time-consuming,
and imperfect. Finding and fixing bugs remains an ongoing challenge.
Over the past two decades, bug bounty programs—programs that pay
independent security researchers, “hackers,” that find and report novel
bugs—have been adopted in an effort to improve this process. Bounty
programs seek to embrace the wisdom of the crowd, rewarding hackers
for their work while improving security at a reasonable cost for vendors.

As these programs are increasingly adopted by companies
and governments, open-source projects have also begun to experiment with
bounties as well. At first blush, they appear to offer an ideal solution for
improving open-source security and confronting the challenges sketched
above: they hold out the promise of improving engagement with otherwise
neglected open-source projects, and they offer a way to help better manage
submissions for popular projects. Yet, as an analysis of the bounty market
reveals, these programs are not without drawbacks: in some instances, they
can create real risks for hackers, organizations, and the public at large.

Bounty Everything: The Rise of Bug Bounty Programs

Before turning to consider the benefits and risks of integrating bounties with
open-source repositories, a brief overview of bug bounty programs—their
history, organization, and associated advantages and hazards—follows. This
overview and analysis are significantly indebted to Ryan Ellis and Yuan
Stevens’ earlier report, Bounty Everything: Hackers and the Making of the
Global Bug Marketplace.65

A Thriving Market for Flaws: An Overview of the
Bounty Ecosystem

Bug bounties are a thriving business. Hundreds of organizations now offer
rewards for novel bugs. Each year, thousands of hackers participate in these
programs, spending countless hours hunting for previously unknown and
undisclosed flaws. Companies pay millions, or in some cases, tens of millions

of dollars each year to hackers through bounty programs.
Bounty programs are not particularly new.

Netscape started the first widely-recognized one nearly 25
years ago.66 After suffering a run of bad press regarding the
security of their popular web browser, Netscape pioneered a
new approach—paying hackers.67 This first bounty program

65	 See Ellis and Stevens, Bounty
Everything for a detailed overview.

66	 Ellis and Stevens,
Bounty Everything, 28-33.

67	 Ibid.

Bug Bounties and FOSS: Opportunities, Risks, and a Path Forward

28

was something of a stunt; it was an attempt to encourage security research-
ers to stop reporting new flaws publicly, where they were making headline
news and eroding trust in Netscape.68 In time, the model caught on. Mozilla,
Netscape’s successor, and tech companies, including Google, Facebook, and
Microsoft would all eventually adopt a bounty model.69
The advent of bounty platforms—BugCrowd in 2011 and
HackerOne in 2012—rapidly expanded the market.70 Platforms
recruited new companies and organizations and encouraged
them to offer bounty programs; importantly, at the same
time, they marketed these programs to hackers as a way to
make extra income or as a full-time career.71

Exact details on the size and scope of the
current market are hard to come by, but the piecemeal
available numbers are nonetheless staggering. HackerOne,
one of the largest platforms, hosts dozens of bounty
programs for different companies and organizations and
handles thousands of new reports each month.72 To date,
over 2 million hackers have registered to participate in bug
bounty programs hosted on the platform.73 Since HackerOne
launched over a decade ago, it has paid over $300 million in
bounties across more than 400,000 valid submissions.74 It is
not just bounty platforms that have found success, Google,
Facebook, and others offer their own, standalone or
in-house, bounty programs. Since it first launched its
program in 2011, Facebook (now, Meta) has paid hackers
over $16 million in bounties.75 Google has more than tripled
that figure over the life of their program, paying out over
$58 million to over 3,000 different hackers.76

Aided by the platforms and the growth in
programs, bounty work has, for some, become a full-time
job. BugCrowd reports that over 60% of the hackers that
participate in their platform view bounties as a full-time
occupation.77 It is a global workforce. Hackers in India, the
United States, and Nepal represent the top three countries
by participation on BugCrowd’s platform.78

The mechanics of bounty programs
are fairly straightforward. At their most simple, they
pay hackers for finding and reporting novel bugs.
Programs define what assets and categories of bugs
are in scope and set payout ranges for qualifying bugs.
Submitted bug reports are reviewed and, if deemed
to qualify, paid. Non-qualifying bugs, reports that
are determined to be either out-of-scope, duplicate,
invalid, or simply informational, are not paid.

Bounty programs are organized in different
ways. Some are open to any and all hackers, while others

68	 Ibid.

69	 Ellis and Stevens,
Bounty Everything, 38-43.

70	 Ibid.

71	 See Ellis and Stevens,
Bounty Everything.

72	 HackerOne, “Why HackerOne?”
Available Online: https://www.

hackerone.com/why-hackerone.

73	 However, how many of
these accounts are active

is unclear. Ibid.

74	 HackerOne, “Why HackerOne?”;
HackerOne, “Hackers Surpass $300

Million in All-time Earnings on

the HackerOne Platform,” Oct. 26,

2023. Available Online: https://

www.hackerone.com/press-release/

hackers-surpass-300-million-all-

time-earnings-hackerone-platform#.

75	 Neta Oren, “Looking Back at
Our Bug Bounty Program in 2022,”

Dec. 15, 2022. Available Online:

https://about.fb.com/news/2022/12/

metas-bug-bounty-program-2022/.

76	 Google, “Our Greatest
Achievements (So Far),”

Aug. 8, 20224. Available

Online: https://bughunters.

google.com/about/key-stats.

77	 BugCrowd, Inside the Mind
of a Hacker 2023. Available

Online: https://www.bugcrowd.

com/wp-content/uploads/2023/12/

inside-the-mind-of-hacker.pdf. 8.

78	 BugCrowd, Inside the Mind of a
Hacker 2023, 5. The international

nature of the labor pool is

consistent across platforms and

programs. For example, India,

Nepal, and Tunisia are the top

three countries by country of

origin for Facebook’s program.

Oren, “Looking Back at Our

Bug Bounty Program in 2022.”

https://www.hackerone.com/why-hackerone
https://www.hackerone.com/why-hackerone
https://www.hackerone.com/press-release/hackers-surpass-300-million-all-time-earnings-hackerone-platform#
https://www.hackerone.com/press-release/hackers-surpass-300-million-all-time-earnings-hackerone-platform#
https://www.hackerone.com/press-release/hackers-surpass-300-million-all-time-earnings-hackerone-platform#
https://www.hackerone.com/press-release/hackers-surpass-300-million-all-time-earnings-hackerone-platform#
https://about.fb.com/news/2022/12/metas-bug-bounty-program-2022/
https://about.fb.com/news/2022/12/metas-bug-bounty-program-2022/
https://bughunters.google.com/about/key-stats
https://bughunters.google.com/about/key-stats
https://www.bugcrowd.com/wp-content/uploads/2023/12/inside-the-mind-of-hacker.pdf
https://www.bugcrowd.com/wp-content/uploads/2023/12/inside-the-mind-of-hacker.pdf
https://www.bugcrowd.com/wp-content/uploads/2023/12/inside-the-mind-of-hacker.pdf

Section III | Bug Bounties and the Ongoing Remaking of Security Work

29

are invitation-only. Additionally, programs operate either standalone or via
an established bounty platform. For in-house operation, the vendor or
organization pays for bugs in their own software applications and handles
all elements of the program, from defining terms of service, triage of incom-
ing reports, and payment. Bounty platforms host bounties for other
organizations for a service fee or commission (the services they offer vary,
but can include not only managing payment, but also overseeing triage,
defining in-scope targets, and other program elements). Platforms encour-
age hackers to seek out bounty programs that they host through a number
of means, including offering exclusive access to live events and private
programs for active and successful participants.79

The Benefits of Bounties: Improved Security and
Flexible Work

Bounty programs offer significant benefits for vendors, hackers, and, by
extension the public. Bounties are, at their core, a way of incentivizing
hackers to review and test targeted assets. For vendors, these programs
are tantalizing: they promise expert analysis at a fraction of the price of a
contracted penetration test or internal audit. Pen test contracts are paid
regardless of the results—a report that finds a dozen new flaws costs the
same as a report that finds two. Similarly, internal security work that uses
full-time employees carries all of the costs associated with this model
of employment, namely defined benefits, regardless of the results of the
outcome of the work. With bounty programs, hackers are only paid when
they find a qualifying bug. The time they spend hunting down duplicate
bugs, following dead ends, filing out-of-scope reports, is all uncompensated.

In talking with hackers, many are enthusiastic about the
benefits of bounty programs.80 They see them as a way to make money
doing something they love. For those working in countries with lower annual
salaries, bounties can offer a significant boon. For some, bounties are seen
as a steppingstone, a way of getting a start in the competitive world of
computer security. For others, the flexibility of bounty programs—working

when you want, as much or as little as you like—provides an
attractive work-life balance.81

Reducing the costs of creating secure
software is not just in the interests of vendors and hackers;
it is in the public interest. The costs of insecure software
are not shouldered by software vendors. On the contrary,
the current state of software liability ensures that the costs
of insecurity are largely externalized and displaced onto the
public.82 Interventions, like bounty programs, that can
improve security without significantly increasing costs are
plainly in the public interest. Yet, bounty programs are not a
panacea: they carry significant often unacknowledged risks.

79	 Ellis and Stevens,
Bounty Everything, 67-72.

80	 See Ellis and Stevens,
Bounty Everything.

81	 Ibid.

82	 See Executive Office of the
President, National Cybersecurity

Strategy, March 2003. Available

Online: https://www.whitehouse.

gov/wp-content/uploads/2023/03/

National-Cybersecurity-

Strategy-2023.pdf. 20-21.

https://www.whitehouse.gov/wp-content/uploads/2023/03/National-Cybersecurity-Strategy-2023.pdf
https://www.whitehouse.gov/wp-content/uploads/2023/03/National-Cybersecurity-Strategy-2023.pdf
https://www.whitehouse.gov/wp-content/uploads/2023/03/National-Cybersecurity-Strategy-2023.pdf
https://www.whitehouse.gov/wp-content/uploads/2023/03/National-Cybersecurity-Strategy-2023.pdf

Bug Bounties and FOSS: Opportunities, Risks, and a Path Forward

30

Precarious Work and Precarious Technology: Creating
and Propagating Risk

The earlier report, Bounty Everything, documented how bug bounty programs
can, in some instances, create risks for participating hackers, vendors that
seek to use bounties as a way of improving their security, and the public at
large.83 Before considering how or if bounties might be suited to the chal-
lenges of open-source security, it is worth pausing to consider the thorny
issues that surround bounties in general.

For hackers, the rise of bug bounty programs can look like
the advent of a new golden age. After decades of hostile legal threats or
indifference from software vendors, bounties appear to offer a warm
embrace: freedom to explore and tinker with the promise of a paycheck. Yet,
as bounties have become a key source of income for many, and a full-time job
for some, the reality is more complex. Bounty programs can reproduce the
worst aspects of the gig economy: while vendors get access to high-quality
work at a comparatively low price, workers take on significant risk.84 Katie
Moussouris, founder and CEO of Luta Security, and an expert in all things
related to bug bounty programs, was direct: “It’s speculative work…It’s the
worst gig economy job. An Uber or Lyft driver will get paid if they accept a
ride and take you to the airport,” but for hackers working in bounty programs,
payment is never certain.85 Uncompensated labor is standard. Since hackers
are only paid when they find a qualifying bug, the hours and late nights spent
hunting for a novel flaw without success are unpaid work.

In this market, bounty programs and platforms wield signifi-
cant power. They determine what counts as a valid submission, set price
scales, and have what amounts to unilateral authority to determine when or
if a bounty is paid. When they disagree with a triage decision—when a bounty
program determines that a bug is merely informational or out-of-scope, and
thus ineligible for payment—hackers have few avenues to push back.86

For software firms and vendors, the promise
of bounty programs can quickly curdle. Creating financial
incentives that encourage the public to report flaws can
lead to a flood of ultimately unhelpful reports. Moussouris,
who has played a formative role in establishing bug bounties
for large companies and governments, notes that the wide-
spread commercialization of bounties has led to an influx of
low-quality reports and spam. She reflected on this trend:

83	 Ellis and Stevens,
Bounty Everything.

84	 Ibid.

85	 Katie M., Interview, 2024.

86	 Ellis and Stevens,
Bounty Everything.

Section III | Bug Bounties and the Ongoing Remaking of Security Work

31

[the popularization of bounty programs] began a I
process that I call ‘beg bounty’ where [participants]
submit a lot of low-quality reports…And they would kind
of spray and pray and hope for a cash reward because [it
is] very low cost for them...And these beg bounty
hunters are using this tactic to generate income and
it’s working.87

If not prepared, bounty programs can struggle to tirage and sort out
what is valuable from all of the noise. Firms that seek out bounties
as a way to improve their security can find themselves wading
through a morass of low-quality reports—and blowing their planned
bounty budget on a high-volume of minor issues in the process.

For organizations, improving security is ideally about more
than simply fixing a single bug: it is about creating sustainable development
practices that minimize the instance and impact of flaws. Responding to
incoming report can be an important part of this development process, but
extracting significant lessons from bug reports—integrating the findings into
root cause analysis that can not only fix the issue at hand but help prevent
the introduction of new bugs down the road—is not trivial. Some firms get
stuck simply playing whack-a-mole, deploying point fixes that address the
issue at hand but fail to get at the underlying causes of vulnerability.

Not only do they carry risks for hackers and firms, but they
also carry risks for the larger public. Bounty programs can also, counter
intuitively, undermine security. In a world of scarce resources, the hours and
dollars devoted to tracking down and responding to each and every new bug
report might be better devoted to working to first develop and deploy secure
software. Bounty programs can help mature organizations that have already
invested in and instituted secure software development practices—they
provide an extra added layer of security and protection. But, for organiza-
tions that have not yet made these investments, bounty programs actually

preserve a world of faulty software and bugs: they provide
an illusion of security while perpetuating a cycle of software
development that privileges speed, market share, and cost
over security.88

87	 Katie M., Interview, 2024.

88	 Ellis and Stevens,
Bounty Everything.

32

Open-Source Security
Bounties: A Path Forward

Open-source security faces the common challenges that plague
maintenance—a lack of maintainer time, too little attention, too much atten-
tion—and other challenges related to the perceived desirability of security
work among open-source volunteers. Bounties can help address some of
these issues in certain cases. Yet, risks abound: bounties can exacerbate
the maintenance and security challenges that some projects currently face.
If not deployed judiciously, bug bounty programs may do more harm than
good. Clarifying these opportunities and risks can help chart a path forward
that avoids pitfalls and improves security in ways that are sustainable.

Shrinking the Window of Vulnerability: Improving
Security through Open-Source Bounties

There are significant opportunities to enhance open-source security
by improving the ability of projects to find, fix, and ultimately extract
important insights from bugs. A number of maintainers that have
experimented with integrating bounties into their projects find the
experience to be very positive. Many have worked with the Internet Bug
Bounty supported by HackerOne. In this program, HackerOne does not
triage incoming reports; the projects themselves remain responsible
for managing reports. The financial model differs from other bounty
programs: the IBB is funded through donations from other companies—
the open-source projects do not pay the bounty—and a portion of the
money paid per bounty is also donated back to the target projects.

Bounties can draw and attention to underserved open-
source projects and help them keep their participants engaged. Daniel,
the founder of curl, the popular and widely used command-line tool,
turned to bounties in an effort to make the project as secure as possible.
A conversation with a contributor led him to adopt a bounty model:

He mentioned at some point that he was not going to
look at curl anymore… because he was going to get food
on his table. He was going to go off and hunt for bugs in
some projects that were actually giving him bounties.89

He turned to bounties as a way of keeping people like this engaged in the
project. He also hoped that, perhaps, a bounty program
would entice highly skilled experts that were otherwise not 89	 Daniel S., Interview, 2024.

Section IV | Open-Source Security Bounties: A Path Forward

33

engaged with curl to review it.90 In his view, the bounty program has worked
wonders, having “increased the frequency of [high quality] security
reports.”91 Daniel compared the findings generated through bounty program
with costly security audits that curl had used in the past and it was not a
close call: bounties turned up more CVEs at a far lower cost.92

Daniel’s positive experience with the IBB was echoed by
others. Sarah at Django agreed, bounties help keep people engaged with the
project and draw new contributors in.93 Alex, a contributor on Rust, also
maintained that bounties can be a positive way to draw participants into the
project.94 Shai, a member of the security team at Django, liked that bounties
provide a way to acknowledge and reward participants. For projects that
suffer from a lack of attention, they offer a possible balm: a way to draw new
blood into the project. For projects worried about contributors leaving them,
the added incentive of a bounty can entice those contributors to stick around.

Bounties can also help manage harmful attention that
projects may receive—a key challenge that can undermine maintenance and
security. Aaron, a core contributor to Ruby on Rails and other projects
introduced above, spoke about the increased accountability that bounties
enabled. The use of the HackerOne platform was a useful way to manage
the abuse and harassment that sometimes followed having a bounty
program. Aaron observed that, although he did not want to generalize,
“people in the security research community are just assholes, pretty
much.”95 With money on the line, a degree of antagonism can appear, as
some hackers are looking to get paid quickly. Partnering with HackerOne
allowed him to assign negative reviews to hackers—an assessment that
would damage their ranking on the platform with potentially impactful
consequences. Here, the bounty platform introduced a degree of accounta-
bility that Aaron welcomed.

The Risks of Open-Source Bounty Programs: The Case
for Caution

Yet, the introduction of bounty programs into open-source projects is not
without risk: for some projects, bounties can make things worse. Woven
inside the testimonials of maintainers that have successfully integrated
bounty programs into open-source projects are notes of caution. Bounty

programs can exacerbate the challenges that projects
already face—increasing commitments for already time-
strapped maintainers, drawing unhelpful and extractive
attention to the project, and undermining the fragile reci-
procity that underpins much of the open-source ecosystem.

Bounty programs can eat up what little
precious time maintainers have available to work on their
projects by drawing unhelpful attention to the project.
Bounties are not a substitute for secure development.

90	 Ibid.

91	 Ibid.

92	 Ibid.

93	 Sarah B., Interview, 2024.

94	 Alex C., Interview, 2024.

95	 Aaron P., Interview, 2024.

Bug Bounties and FOSS: Opportunities, Risks, and a Path Forward

34

Daniel, the founder of curl is enthusiastic in his support for open-source
bounties, but only under limited circumstances. For new projects that were
just finding their feet, bounties could well be a disaster. Starting a bounty
too soon could be, in his words, “quite scary.”96 He finds that they work best
when they are the last piece of the security puzzle, not the first. Before
launching a bounty program, it is important to first have in place strong
security practices. These practices are not, in his account, mysterious:

[to achieve] good quality and good security it’s mostly
just a matter of following all those engineering practices
that we all know we should follow. We all know exactly
how to do things securely but mostly when things go
wrong is when we don’t do that right. We don’t follow
them, we don’t do tests, we don’t do reviews, and we
skip parts of it…97

By not having proper security practices in place, open-source projects are
inviting disaster. The project is likely to be overrun with low-quality reports
that it cannot possibly keep up with. Katie Moussouris underlined this
theme: “Bug bounties ideally catch the vulnerabilities that your security
development processes miss.”98 But, if these processes are not yet in
place or mature, a bounty program is going to make things exponentially
worse—spam, minor issues, and other relevant and irrelevant reports will
swamp the project.

Bounty programs may add counterproductive or harmful
attention to the project. Dealing with the volume of reports that follow a
bounty program is a challenge, even for well-established projects that have
security teams, clear disclosure policies and processers, and years of expe-
rience. Shai, a member of the Django security team, recounted the
seemingly endless stream of emails reporting the same non-security issues
over and over.99 Daniel agreed that dealing with “crap” reports came with
the territory. For established projects such as Django and curl, a deep bench
of experience and clear policies make it possible for maintainers to wade
through the inevitable junk that pours in thanks to the bounty program.
Other projects might not be so well positioned. What little time maintainers
have available to devote to their project, is going to be further eroded by
tending to the work of triaging bug reports. This work—tirage—is not some-
thing that can be easily offloaded to a bounty platform or outsourced.
Familiarity with and understanding of the projects—and their
quirks and particularities—are needed. Project maintainers
need to do this work. When time is already a scarce
resource, adding this new task, managing bug reports, on
top of their already busy and crowded schedule can under-
mine maintenance and, in the process, security.

96	 Daniel S., Interview, 2024.

97	 Daniel S., Interview, 2024.

98	 Katie M., Interview, 2024.

99	 Shai B., Interview, 2024.

Section IV | Open-Source Security Bounties: A Path Forward

35

↗ Figure 4 HackerOne’s
Internet Bug Bounty Program

Data drawn from 980 publicly

available reports (touching

24 repositories) associated with

the IBB on HackerOne’s platform.

Bounty programs incentivize participation, but they are
unlikely to help projects with small contributor bases grow
in meaningful ways. Unleashing economic rewards draws
attention to a project, but bounties are unlikely to be a
shortcut to growing a sustainable and supportive commu-
nity. Aaron, the contributor to Rack and Ruby on Rails
introduced above, worried that while bounties could help

“more established projects,” smaller ones would sink under the weight of
unproductive engagement. As he noted, “most of the folks that are coming
to the project… are just fishing for bounties essentially.”100 Others
observed that those that enter the project through bounty programs rarely,
if ever, matriculate into other roles—they are just there for a bounty.

 Indeed, a look at the public IBB data hosted on HackerOne
indicates that most hackers in open-source bounty programs are
infrequent participants—they typically only submit one successful bounty
report. A clear majority—61%—of those that have received a bounty via
the IBB program have only one successful submission (see Figure 4).
These are not hackers that are necessarily going to have a long-term
investment in the ongoing health and maintenance of the project.

Incentivizing this sort of casual, for-profit engagement
threatens to undermine reciprocity. Bounties can amplify the frustrating
cycle of harmful attention that undermines what many participants in
open source prize: collaboration and community. Rather than investing
time and energy into participating in the project, inevitably, some
participants that encounter the project thanks to a bounty program
will, in effect, be “spraying and praying,” that is: sending out batches of
low-quality reports with the hopes of maybe getting paid. These contri-
butions can take away more than they add. Additionally, the presence of
bounties may drive a wedge through a project. Once certain participants
start getting paid for their contributions, others that have been toiling
and donating their labor on a voluntary basis may become resentful.

There was agreement on one critical point regarding the
viability of open-source bounty programs: funding is key.
A number of maintainers were only able to support bounty 100	 Aaron P., Interview, 2024.

engaged in only
1 project (224)

with no disclosed
project data (82)

engaged in more than
1 project (34) 10%

100%

39%

24%

66%

61%

with a
successful
submission

(340)

100

75

25

Percentage
of hackers

with 1 report
(208)

with more than
1 report (132)

Bug Bounties and FOSS: Opportunities, Risks, and a Path Forward

36

programs thanks to the IBB’s unique funding model, agreeing that the
program would not be possible without external financial backing. Aaron
noted that IBB support made it possible to fund the increasing number of
reports that were coming in: “I don’t know how many of these ReDoS
attacks we paid out, but it’s a lot. And [I’m] glad it’s not my money we’re
spending.”101 Daniel agreed with this sentiment. Initially, curl experi-
mented with a different bounty model before being brought into the IBB.
But the IBB’s model of financial support was critical. Now, in his words, the
financial impact of a high number of submissions is not a worry: “it doesn’t
really matter if we get a lot of security problems. The amount of money we
pay is not a problem for us.”102 Without funding support through
programs such as the IBB, bounties are largely unsustainable for
open-source projects.

Best Practices and a Path Forward: A Future for Open-
Source Bounties

Open-source security is a significant challenge: given the ubiquity of
open-source components in commercial software applications and the
importance of open-source software as standalone tools, it is difficult
to talk about software security without addressing open-source
security. Indeed, the two are now inseparable. Bug bounty programs
can help improve open-source security in specific instances, but
there are good reasons to proceed with caution. Bounty programs can
unintentionally undermine security. If not deployed judiciously, they
can amplify the challenges that open-source projects already face.

	 The following five recommendations are drawn from
the proceeding analysis. They provide a set of coordinates that can help
chart a path forward. Bounty programs are, of course, not a silver bullet.
They are but one of many possible security interventions. As with many
complex problems, a cross-section of solutions and approaches is needed
to tackle the challenges of open-source security. These recommendations
are designed to help foundations, policymakers, open-source projects,
funders, and others in sorting out when and how to deploy open-source
bounty programs, and when to turn to other tools and approaches.

Recommendation #1: Invest in Holistic Approaches
to Maintenance

Open-source security is closely tied to larger question of maintenance.
Poorly maintained projects are, inevitably, insecure. Investing in
and improving maintenance has spillover effects that also improve
security. To be clear, most projects are struggling.
Their performance over time is declining across nearly
all key measures—it is taking them longer to resolve

101	 Aaron P., Interview, 2024.

102	Daniel S., Interview, 2024.

Section IV | Open-Source Security Bounties: A Path Forward

37

issues and longer to respond to pull requests, they are shedding
contributors, and the number of commits is trending downward.
The trajectory for most open-source projects is not promising.

For these projects, improving baseline maintenance
capacity leads to security gains above what a bounty program can
offer. For projects that currently struggle to respond to submitted
issues, resolve pull requests, or attract active contributors, a bounty
program is likely do more harm than good. Bounties provide new
economic incentives that draw unhelpful attention to the project,
while saddling maintainers with additional work that they likely do not
have the time to manage. For foundations, corporations, governments,
and others looking to invest in open-source security, continuing to
seek out opportunities to buttress maintenance is worthwhile. These
interventions can and should be considered as not just investments
in the open-source ecosystem, but investments in security.

Recommendation #2: Bounty Last, not First

Bug bounty programs work best when they are the layer on top of
already-existing security practices. Bounties are not a substitute for secure
development practices; and they should not be deployed before these
practices are in place. Adopting best practices, such as the processes
associated with security development lifecycle (SDL) or secure software
development framework (SSDF), can ensure baseline security measures are
in place.103 For mature projects, bounty projects can provide an added layer
of defense and new insights that can be integrated back into the develop-
ment process in a cycle of ongoing improvement.

Adopting a bug bounty program before achieving maturity,
however, undermines security. Starting a bounty program too soon can lead

to a near-endless stream of reports regarding minor issues.
These issues can overwhelm project participants. Immature
projects not only struggle to review and respond to submit-
ted bugs; they falter in their ability to extract meaningful
lessons and insights from new reports. Superficial errors
may be fixed, but the root causes will remain unaddressed.

Recommendation #3: Leverage Bounty
Programs to Improve Identification

Not all mature projects derive the same benefits from a
bug bounty program. Identifying which projects may be the
most attractive candidates for bounty programs is critical.
A look at the sampled GitHub and CVE data indicates that
there are ripe opportunities to improve security by using
bounty programs to help speed up the initial identification
and reporting of vulnerabilities to impacted repositories.

103	For an overview of the
secure development lifecycle

approach, see: Microsoft

Security Engineering, “Security

Development Lifecycle (SDL)

Practices.” Available Online:

https://www.microsoft.com/

en-us/securityengineering/sdl/

practices. For an overview of

the secure software development

framework, see: Murugiah Souppaya,

Kare Scarfone, and Donna Dodson,

Secure Software Development

Framework (SSDF) Version 1.1.:

Recommendation for Mitigating the

Risk of Software Vulnerabilities,

NIST Special Publication

800-218. Feb. 2022. Available

Online: https://nvlpubs.nist.gov/

nistpubs/SpecialPublications/

NIST.SP.800-218.pdf.

https://www.microsoft.com/en-us/securityengineering/sdl/practices
https://www.microsoft.com/en-us/securityengineering/sdl/practices
https://www.microsoft.com/en-us/securityengineering/sdl/practices
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218.pdf

Bug Bounties and FOSS: Opportunities, Risks, and a Path Forward

38

Looking at how different projects respond to known
vulnerabilities is a useful, albeit rough, indicator of security performance.
Programs that are quick to fix known flaws perform, overall, better than
their peers. Fixing a known flaw in a project’s code follows a timeline that
involves three key steps: (1) the initial disclosure and publication of the
bug (CVE publication date, or pd); (2) the identification of the bug in a
particular project’s code (identification date, or id); and (3) the deployment
of an update that resolves the bug by the impacted project (resolve
date, or rd). This entire timeline, Time to Fix, can be described as the
difference between the resolve date (rd) and CVE publication date (pd).

The timeline can be split into two segments: (1) identifying
the bug within a project; and (2) creating and deploying the update. This
first segment—identifying the bug—is the period between pd and id (Time
to Identify = id - pd). The second segment—creating and deploying the
update—is the period between id and rd (Time to Resolve = rd - id). The entire
process, Time to Fix, encompasses the full timeline (Time to Fix = rd - pd).

Examining the composition of the Time to Fix timeline
reveals pain points and opportunities to improve performance. This analysis
uses equal quantiles to categorize projects into “good,” “average,” and
“bad” categories. Good projects are those in the fastest third (bottom
33%) in terms of median CVE resolution time, average projects fall within
the middle third (33% to 67%), and bad projects are in the slowest third
(top 33%). Examining how different projects within these categories
are dividing their time—How much time are they spending identifying
vulnerabilities in their repository? How much time are they spending
developing resolutions to reported flaws? —is instructive. Projects
that fall into the “average” category spend an equal amount of time
on identification and resolution (see Figure 5), while those in both the
“good” and “bad” categories spend a disproportionate amount of time
identifying the presence of published vulnerabilities in their projects.

The analysis reveals that while average performers
maintain a balance between identification and resolution, both strong
and below-average projects are notably less efficient, spending
significantly more time on the initial identification phase. The takeaway
from this analysis is plain: there is significant room to improve the
security performance of projects by investing in tools and processes
that can help more quickly identify bugs in open-source projects.
Bounty programs should target mature projects that are nonetheless
spending a disproportionate amount of time on identification. Speeding
up initial identification can reduce exposure and improve security.

Recommendation 4: Open-Source Bounty Programs
Should Adopt Ethical Practices

Bounty programs should recognize the unique characteristics of the open-
source ecosystem and take care to enhance rather than erode reciprocity.

Section IV | Open-Source Security Bounties: A Path Forward

39

In all instances, they should be designed to minimize the
risks for participating hackers—these steps should include
ensuring legal protections, adopting transparent processes
around payment and review, offering dispute mediation

processes, and other measures.104 Bounty programs introduce additional
risks in an open-source context: they can disrupt and undermine reciprocity.
Open-source projects largely rely on voluntary labor. These contributions
are often offered in the spirit reciprocity: they are free for other to make use
of, but the hope is that some will offer their own contributions that will then
be freely available (typical open-source licenses make this commitment
explicit). Bounties selectively provide payment for some identified subset of
project activities, while leaving others uncompensated. This can undermine
reciprocity and create ill-will within the project between those that are
being paid and those that are not.

	 Open-source projects have navigated similar
challenges with success. As sponsorships, grants, and corporate
support interact with open-source projects, it is common for paid
and unpaid workers to collaborate. To ensure that bounties do not
undermine reciprocity, is it critical that bounty programs are designed
and embraced by the existing project community. Programs that are
organic to the project—not bolted on without consultation with current
participants—can and should address questions of equity and reciprocity.
These conversations ought to precede the adoption of any bounty
program. Failing to do so risks alienating the current project community
in ways that are both undesirable and counterproductive to security.

Recommendation #5: Bounty Funding Should Be
Community-Driven and Aid Structural Support

Open-source bug bounty programs require resources
that are beyond the capacity of most open-source
projects. Funding for these programs should come from
the larger community of users that benefit and make
use of open-source technologies. Despite efforts of

104	For a detailed discussion of
how to mitigate the general risks

that bounty programs can displace

onto researchers, see Ellis and

Stevens, Bounty Everything.

↗ Figure 5 Time to Fix:
Comparing Time to Identify

and Time to Resolve

25 50 75 100

bad

average

good

Project
category

68%

50.2% of time to resolve

24.9%

32%

49.8%

75.1% of time to identify

Proportion of time in %

Bug Bounties and FOSS: Opportunities, Risks, and a Path Forward

40

corporations, governments, and other organizations to create open-source
program offices and invest in open-source programs, contributors still
perceive a lack of reciprocity from large users, particularly profitable
corporations. Bounty programs can be one avenue—among many—through
which users can give back to and support open-source programs.

	 In order to avoid the unintended consequences and
the distorting power of economic incentives, bounties should be paired
with general investments in the maintenance of the open-source project.
Bounties create new work for projects: at minimum, they must triage incom-
ing bug reports and develop new fixes. Without supporting or offsetting
this new work, the benefits of the bounty programs can be lost. Adding new
responsibilities without new capacity is unlikely to improve the maintenance
or security of an open-source project. The IBB is one useful model of how
to make sure that bounty programs also provide aid to maintainers and the
larger project. In the IBB, companies and organizations contribute to the
revolving bounty fund; payments are distributed both to the hacker that
identifies the previously unknown issue and to the project (the payment to
the project is a percentage of the bounty). The funding is offered up with no
limitation or direction—projects can use it as they see fit. This model seeks
to minimize or offset the new work involved with managing the overhead
associated with a bounty program through paired general support.

42

Measuring Open‑Source Maintenance

To understand the general maintenance
challenges of projects, we analyzed key
maintenance metrics, including median
issue resolution time and median pull
request (PR) resolution time across
sampled GitHub projects. The data shows
significant variability in how quickly
projects resolve issues and PRs.

We focus on understanding the variability in
maintenance performance across different
open-source projects by analyzing key main-
tenance features. These features include
metrics related to commit frequency, issue
resolution, and pull request handling, which
are critical indicators of project maintenance.

Metrics

Quarterly Commit Slope Measures
the rate of change in commit activity
over time. A positive slope (↗) indicates
increasing activity, while a negative
slope (↘) indicates decreasing activity.

Issue Time Slope Captures whether
projects are resolving issues more
quickly or slowly over time. A negative
value ( ▶) indicates improvement, while
a positive value (■) indicates delays.

PR Time Slope Similar to Issue Time Slope,
but for pull requests. It reflects whether PRs
are being handled more efficiently over time.

Quarterly Median Active Contributors
Shows the median number of active
contributors participating in the
project each quarter. This is an
indicator of the project’s community
health and engagement.

Median Issue Resolution Time
Theaverage time it takes to resolve

issues in a project. Lower values
indicate quicker response times.

Median PR Resolution Time The
average time it takes to resolve pull
requests. Faster PR resolution times
suggest a more responsive project.

Statistics Glossary

Mean The average value for each metric.

Median The median is the middle value in
a sorted dataset. It represents the point
at which half the data points are below,
and half are above, making it less sensitive
to outliers compared to the mean.

Standard Deviation (std) Illustrates how
much variation exists from the mean.

Min The lowest value observed, indicating
the best performance in this metric.

25% (1st Quartile) The value below
which 25% of the data fall.

50% (Median) The middle value of
the dataset. Projects at this point
are performing averagely.

75% (3rd Quartile) The value below
which 75% of the data fall.

Max The highest value observed,
representing the poorest
performance in this metric.

Variance The degree of spread or
variability in the data. A higher variance
means the data is more spread out,
while a lower variance means values
are more clustered around the mean.

Appendix A | Measuring Open‑Source Maintenance

43

Statistical Insights

1.	 Quarterly Commit Slope On average,
commit activity is slightly decreasing
with a mean of -2.67 (↘). The high
variance of 432.63 indicates significant
variability between projects. While
some projects are accelerating
their commit frequency, others are
experiencing substantial slowdowns,
with a minimum slope of -335.5 (↘)
and a maximum of +415.0 (↗).

2.	 Issue Time Slope The mean value of
+14.72 (■) shows that, on average,
projects are seeing an increase in
the time taken to resolve issues.
However, the large variance of 2,195.52
(⚠) suggests there is considerable
divergence: some projects are
improving, while others face severe
delays in resolving issues. The
extreme range, from -647.15 ( ▶) to
+879.0 (■), reflects this challenge.

3.	 PR Time Slope Similar to issue
resolution, pull requests are taking
longer to resolve, with a mean slope

of +10.43 (■). The high variance of
1,961.72 again highlights the wide
performance gap across projects.
The slope ranges from -807.0 ( ▶) to
+972.0 (■), showing that some projects
have greatly improved PR resolution,
while others struggle significantly.

4.	 Quarterly Median Active Contributors
The average number of active
contributors per project is 5.64, with
a variance of 128.35, which indicates
that while most projects have small
teams, a few larger projects have
significantly higher numbers of
active contributors. This discrepancy
is seen in the range from 1.0 to
271.0 contributors per project.

5.	 Median Issue Resolution Time
The median issue resolution time
is 20.16 days, but the variance
of 1,471.28 reveals considerable
disparity. Some projects are resolving
issues very quickly (minimum 0.0
days), while others are taking much
longer, with a maximum of 729 days.

↑ Figure 6 Measuring Maintenance Activity – Data and analysis drawn from 3,707 active repositories.

Statistics
Quarterly

commit slope
Issue�

time slope
PR

time slope

Quarterly
median� active
contributors

Median issue
resolution
time (days)

Median� PR
resolution
time (days)

Mean ↘	 -2.67 ■ 	 14.72 ■ 	 10.43 	 5.64 	 20.16 	 9.19

Median ↘	 -1.12 ■ 	 3.78 ■ 	 0.79 	 3.00 	 9.00 	 1.00

Std ↗	 20.80 ■ 	 46.86 ■ 	 44.29 	 11.33 	 38.36 	 34.16

Min ↘	 -335.50 ▶	 -647.15 ▶	 -807.00 	 1.00 	 0.00 	 0.00

25% ↘	 -3.66 ■ 	 0.36 ● 	 0.00 	 2.00 	 4.00 	 0.00

50% ↘	 -1.12 ■ 	 3.78 ■ 	 0.79 	 3.00 	 9.00 	 1.00

75% ↘	 -0.10 ■ 	 13.50 ■ 	 6.96 	 5.00 	 21.00 	 4.50

Max ↗ 	 415.00 ■ 	 879.00 ■ 	 972.00 	 271.00 	729.00 	619.50

Variance 	 432.63 ⚠ 	 2,195.52 	 1,961.72 	 128.35 	 1,471.28 	 1,167.19

Bug Bounties and FOSS: Opportunities, Risks, and a Path Forward

44

The variability in issue resolution times
indicates that while some projects
manage issue resolution efficiently,
others struggle with long delays.

6.	 Median PR Resolution Time On average,
pull requests are resolved faster than
issues, with a median resolution time
of 9.19 days. However, the variance
of 1,167.19 demonstrates significant
inconsistency across projects, with
some resolving PRs almost immediately
(minimum 0.0 days), while others take
as long as 619.5 days. This reflects
variability in how efficiently different
projects manage their pull requests.

Taken together, these statistics
emphasize the variability in the
maintenance and performance of open-
source projects. While some projects
exhibit efficient resolution times and
consistent contributor activity, others
face substantial delays and maintenance
challenges, contributing to the overall
complexity in project management.

↑ Figure 7 Visualizing
Maintenance Metrics and Trends

Data and analysis drawn from

3,707 active repositories.

Min
Median

Mean
Max

Issue time slope

-500 0 500

-647.15-647.15
3.783.78
14.7214.72

879879

Min
Median

Mean
Max

PR time slope

-500 0 500

-807-807
0.790.79
10.4310.43 972972

Min
Median

Mean
Max

Quarterly commit slope

-500 0 500

-335.5
-1.12-1.12
-2.67-2.67

415415

Quarterly
median
active
contributors

Min
Median
Mean
Max

0

11
33
5.645.64

271271

Median
issue
resolution
time

Min
Median
Mean
Max

0 500

00
99
20.1620.16

729729

Median
PR
resolution
time

Min
Median
Mean
Max

0 500

00
11
9.199.19

619.5619.5

45

Testing Maintenance and Security

Collected GitHub data and CVE information
can be used to test the relationship between
maintenance practices and security
performance within open-source projects.
Specifically, we aim to explore whether
projects that are well-maintained—those with
regular commits, timely pull request (PR)
management, and active issue resolution—
are more secure. Security performance is
assessed by how quickly a project identifies
and resolves known vulnerabilities, as
measured by the median CVE resolution time.

To address this, we used logistic regression
to predict a project’s security classification
based on its maintenance features. This
approach allows us to quantitatively assess
the relationship between maintenance-
related metrics (such as PR handling and
commit activity) and security outcomes.

Data Collection and Feature Selection

To perform this examination, we gathered
two main types of data from sampled
open-source repositories:

1.	 Maintenance Data This includes
features that provide insight into how
a project is maintained, including:

	բ PR Time Slope a measurement
of how PR resolution times
change over time;

	բ Quarterly Median Commits a
count of the median number of
commits made to the repository
per quarter, indicating the
project’s development activity;

	բ Extended Quarterly Median
Commits a longer-term view
of commit activity;

	բ Open Issues Count a measure
of the total number of open
issues, providing a sense of the
project’s workload or backlog;

	բ Stargazers Count a proxy for
community interest in the project;

	բ Quarterly Median Active
Contributors a measure of how many
active contributors are involved in
the project.

2.	 Security Data This includes the median
CVE resolution time, which serves as a
useful stand-in for the project’s security
performance. Generally, projects that
resolve CVEs quickly are considered
to have better security practices.

Project Classification

To establish a clear relationship between
maintenance and security, we next
categorized projects based on their median
CVE resolution time using equal quantiles:

Good Projects projects that fall
into the bottom 33% of median CVE
resolution times (i.e., those that resolve
security vulnerabilities the fastest);

Average Projects projects that
fall into the middle 33%;

Bad Projects projects that fall into
the top 33% of median CVE resolution
times (i.e., those that resolve
vulnerabilities the slowest).

Bug Bounties and FOSS: Opportunities, Risks, and a Path Forward

46

This classification allowed us to
compare the maintenance practices
of projects across different levels
of security performance.

Modeling with Logistic Regression

To predict the security classification (good,
average, or bad), we employed a logistic
regression model. Logistic regression is well-
suited for this analysis because it provides
probabilities for classification, allowing
us to assess how different maintenance
features contribute to a project’s likelihood
of falling into a particular security category.

The process involved several steps:

1.	 Feature Selection We selected key
maintenance-related features (e.g.,
PR Time Slope, Quarterly Median
Commits, and others) to be used
as predictors in the model.

2.	 Cross-Validation We used 5-fold
stratified cross-validation to evaluate
the performance of the model. This
ensures that the model is tested on
different subsets of the data, reducing
the risk of bias and providing a more
robust estimate of its performance.

3.	 Metrics We measured the model’s
performance using three key metrics:

	բ Cross-Validation Accuracy The
proportion of correct predictions
made by the model across
different folds of the data;

	բ Coverage The proportion of the
dataset that was used for each
feature combination, ensuring
that the model is evaluated across
a large portion of the dataset;

	բ Accuracy-to-Coverage Ratio
This metric balances the model’s
accuracy with the amount of
data it was able to cover. A higher
ratio indicates a better trade-off
between accuracy and coverage.

Feature Impact Analysis

To determine which maintenance features had
the greatest impact on security performance,
we evaluated different combinations of
features using logistic regression. We focused
on both single-feature and two-feature
combinations to identify which metrics were
most predictive of strong security outcomes.

The top ten feature combinations
based on cross-validation
accuracy are listed in Figure 8.

Key Insights

The analysis demonstrates that certain
maintenance practices are strongly corre-
lated with better security performance:

PR Time Slope and Quarterly Median
Commits consistently appeared among
the top-performing feature combinations.
These metrics reflect both efficient PR
management and regular development
activity, which are crucial for maintaining
project health and security.

Extended Quarterly Median Commits provides
a longer-term view of commit activity
and also appeared frequently in the top
combinations, indicating the importance
of sustained development over time.

Open Issues Count and Median PR
Resolution Time also contribute to
security performance, especially when
combined with regular commit activity.

Appendix B | Testing Maintenance and Security

47

Conclusion

The results of the logistic regression
analysis indicate a clear correlation
between strong maintenance practices
and security performance. Projects
that are regularly maintained, with high
commit activity and efficient handling
of pull requests and issues, tend to have
shorter CVE resolution times, making
them more secure. The PR Time Slope and
Quarterly Median Commits features, in
particular, emerged as critical indicators
of a project’s security posture.

This analysis supports the conclusion that
well-maintained projects are more secure,
as robust maintenance practices help
ensure that vulnerabilities are identified
and addressed in a timely manner.

↑ Figure 8 Testing the Connection
Between Security and Maintenance

Data and analysis drawn from

3,707 active repositories. Table

summarizes the effectiveness

of various maintenance metrics

to predict security outcomes.

This data in this figure were

corrected by the authors

after printing and so appear

correctly only in the digital

version. The updated numbers

do not in any way change the

conclusions or findings.

 Feature combination
CV accuracy

(%)
Coverage

(%)
Accuracy-to-

Coverage ratio

PR time slope +
quarterly median commits

	 39.63 	 99.94 	 0.40

PR time slope +
extended quarterly median commits

	 39.64 	 99.94 	 0.40

Quarterly median commits +
median pr resolution time

	 39.14 	100.00 	 0.39

Extended quarterly median commits +
median pr resolution time

	 39.31 	100.00 	 0.39

Extended quarterly median commits 	 38.3 	100.00 	 0.38

Extended quarterly median commits +
stargazers count

	 36.97 	100.00 	 0.37

Extended quarterly median commits +
open issues count

	 37.61 	100.00 	 0.38

Quarterly median commits 	 38.18 	100.00 	 0.38

Quarterly median commits +
open issues count

	 37.73 	100.00 	 0.38

Pr time slope +
quarterly median active contributors

	 39.55 	 99.94 	 0.40

Acknowledgments
The authors wish to thank and acknowledge
the contributions of Yuan Stevens.
The earlier round of interviews with bug
bounty participants were conducted
jointly by Ryan Ellis and Yuan Stevens
for their coauthored Data & Society
report, Bounty Everything: Hackers and
the Making of the Global Bug Marketplace
(2022). That report provides the
foundation for much of this work. Yuan’s
contributions are greatly appreciated.

This report would not be possible
without the participation of the dozens
of interviewees that kindly shared their
experience. Their insights and generosity
are acknowledged and deeply appreciated.

The support of the Sovereign Tech
Fund was critical to the conception and
execution of this report. Paul Sharratt and
Tara Tarakiyee provided useful feedback,
suggestions, and contributions that helped
shape and improve the final document.

Additionally, the authors wish to
acknowledge additional funding support
from the National Science Foundation. This
material is based upon work supported
by the National Science Foundation under
Grant Nos. 1915815, 1935520, and 2203175.
Any opinions, findings, and conclusions
or recommendations expressed in this
material are those of the author(s) and
do not necessarily reflect the views of
the National Science Foundation.

Authors
Ryan Ellis
Jaikrishna Bollampalli

Sovereign Tech Fund
SPRIND GmbH
Federal Agency
For Disruptive Innovation

Lagerhofstraße 4
04103 Leipzig
Germany

Editing
Supertext Deutschland GmbH

Layout and Design
Village One eG × Nina Bender

Printing
Printed in Germany at Pinguin Druck, Berlin

Fonts
Fabrikat Normal & Fabrikat Mono
by HvD Fonts

Credits

This report draws together
research on bug bounty
programs, open-source
communities, and open-source
security, and it considers
how bounties might improve
security while avoiding myriad
potential risks for security
researchers, open-source
projects, and the public.

	Introduction
	Log4j: Open-Source Security Under a Microscope
	Bounties and Open-Source Security: Charting a Path Forward
	Structure of the Report
	Section I

	Methods: Mapping ­Open‑Source Challenges, Documenting Bounties
	GitHub Data: Surveying Maintenance and Security
	HackerOne Data: The Internet Bug Bounty Program
	Interview Data: Understanding Open-Source Maintainers & Bug Bounty Participants
	Section II

	Open-Source Security: Structural Challenges
	Securing the Commons: Collaborative Debugging in Open-Source Projects
	Maintaining Security: Time, Neglect, and the Problem of Popularity
	Life Gets in the Way: When Hobbies Come Last
	A Community of One: The Problem of Neglect
	Popularity and Its Discontents
	A Well-Maintained Project Is a Secure Project

	“It Sucks…”: The Unique Challenges of Open-Source Security
	Section III

	Bug Bounties and the Ongoing Remaking of Security Work
	Bounty Everything: The Rise of Bug Bounty Programs
	A Thriving Market for Flaws: An Overview of the Bounty Ecosystem

	The Benefits of Bounties: Improved Security and Flexible Work
	Precarious Work and Precarious Technology: Creating and Propagating Risk
	Section IV

	Open-Source Security Bounties: A Path Forward
	Shrinking the Window of Vulnerability: Improving Security through Open-Source Bounties
	The Risks of Open-Source Bounty Programs: The Case for Caution
	Best Practices and a Path Forward: A Future for Open-Source Bounties
	Recommendation #1: Invest in Holistic Approaches to Maintenance
	Recommendation #2: Bounty Last, not First
	Recommendation #3: Leverage Bounty Programs to Improve Identification
	Recommendation 4: Open-Source Bounty Programs Should Adopt Ethical Practices
	Recommendation #5: Bounty Funding Should Be Community-Driven and Aid Structural Support

	Appendix A

	Measuring Open‑Source Maintenance
	Metrics
	Statistics Glossary
	Statistical Insights
	Appendix B

	Testing Maintenance and Security
	Data Collection and Feature Selection
	Project Classification
	Modeling with Logistic Regression
	Feature Impact Analysis
	Key Insights
	Conclusion

